Detecting the rotten fruits become significant in the agricultural industry. Usually, the classification of fresh and rotten fruits is carried by humans is not effectual for the fruit farmers. Human beings will become tired after doing the same task multiple times, but machines do not. Thus, the project proposes an approach to reduce human efforts, reduce the cost and time for production by identifying the defects in the fruits in the agricultural industry. If we do not detect those defects, those defected fruits may contaminate good fruits. Hence, we proposed a model to avoid the spread of rottenness. The proposed model classifies the fresh fruits and rotten fruits from the input fruit images. In this work, we have used three types of fruits, such as apple, banana, and oranges. A Convolutional Neural Network (CNN) is used for extracting the features from input fruit images, and Softmax is used to classify the images into fresh and rotten fruits. The performance of the proposed model is evaluated on a dataset that is downloaded from Kaggle and produces an accuracy of 97.82%. The results showed that the proposed CNN model can effectively classify the fresh fruits and rotten fruits. In the proposed work, we inspected the transfer learning methods in the classification of fresh and rotten fruits. The performance of the proposed CNN model outperforms the transfer learning models and the state of art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.