State-of-the-art mobile platforms, such as smartphones and tablets, are powered by heterogeneous system-on-chips (SoCs). These SoCs are composed of many processing elements, including multiple CPU core clusters (e.g., big.LITTLE cores), graphics processing units (GPUs), memory controllers and other on-chip resources. On the one hand, mobile platforms need to provide a swift response time for interactive apps and high throughput for graphics-oriented workloads; on the other hand, the power consumption must be under tight control to prevent high skin temperatures and energy consumption. Therefore, commercial systems feature a range of mechanisms for dynamic power and temperature control. However, these techniques rely on simple indicators, such as core utilization and total power consumption. System architects are typically limited to the total power consumption, since multiple resources share the same power rail. More importantly, most of the power rails are not exposed to the input/output pins. To address this challenge, this paper presents a thorough methodology to model the power consumption of major resources in heterogeneous SoCs. The proposed models utilize a wide range of performance counters to capture the workload dynamics accurately. Experimental validation on a Nexus 6P phone, powered by an octa-core Snapdragon 810 SoC, showed that the proposed models can estimate the power consumption within a 10% error margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.