The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.
Recent studies have revealed that immune repertoires contain a substantial fraction of public clones, which may be defined as Ab or TCR clonal sequences shared across individuals. It has remained unclear whether public clones possess predictable sequence features that differentiate them from private clones, which are believed to be generated largely stochastically. This knowledge gap represents a lack of insight into the shaping of immune repertoire diversity. Leveraging a machine learning approach capable of capturing the high-dimensional compositional information of each clonal sequence (defined by CDR3), we detected predictive public clone and private clone-specific immunogenomic differences concentrated in CDR3's N1-D-N2 region, which allowed the prediction of public and private status with 80% accuracy in humans and mice. Our results unexpectedly demonstrate that public, as well as private, clones possess predictable high-dimensional immunogenomic features. Our support vector machine model could be trained effectively on large published datasets (3 million clonal sequences) and was sufficiently robust for public clone prediction across individuals and studies prepared with different library preparation and high-throughput sequencing protocols. In summary, we have uncovered the existence of high-dimensional immunogenomic rules that shape immune repertoire diversity in a predictable fashion. Our approach may pave the way for the construction of a comprehensive atlas of public mouse and human immune repertoires with potential applications in rational vaccine design and immunotherapeutics.
Highlights d Chronic infection reveals sustained clonal diversity of induced antibodies d Antibody repertoires attain a personalized signature during chronic infection d Chronic viral infection shows sustained GC response and PC differentiation d Chronic infection selects for higher-affinity antibodies than acute infection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.