The growth-promoting effect of Id-1 (inhibitor of differentiation/DNA binding) has been demonstrated in a number of human cancers. However, the mechanisms responsible for its action are not clear. In this study, we report that in prostate cancer cells, Id-1 promotes cell survival through activation of nuclear factor-jB (NF-jB) signalling pathway. After stable expression of Id-1 protein in LNCaP cells, we found that the Id-1 transfectants showed increased resistance to apoptosis induced by TNFa through inactivation of Bax and caspase 3. In addition, in the LNCaP cells expressing ectopic Id-1 protein, we also observed increased NF-jB transactivation activity and nuclear translocation of the p65 and p50 proteins, which was accompanied by upregulation of their downstream effectors Bcl-xL and ICAM-1. These results indicate that the Id-1-induced antiapoptotic effect may be via NF-jB signalling transduction pathway in these cells. In addition, inactivation of Id-1 by its antisense oligonucleotide and retroviral construct in DU145 cells resulted in the decrease of nuclear level of p65 and p50 proteins, which was associated with increased sensitivity to TNFa-induced apoptosis. Our results strongly suggest that Id-1 may be one of the upstream regulators of NF-jB and activation of NF-jB signalling pathway may be essential for Id-1 induced cell proliferation through protection against apoptosis. Our findings also suggest a potential therapeutic strategy in which inactivation of Id-1 may lead to sensitization of prostate cancer cells to chemotherapeutic drug-induced apoptosis.
Our results suggest that over expression of Id-1 may have important roles in the development of prostate cancer. The potential use of Id-1 protein as a marker for prostate cancer should be further explored.
More than 75% of nasopharyngeal carcinoma (NPC) patients have already developed local or regional spread at diagnosis, which hampers effective treatment and results in a poor prognosis. It is essential to characterize more sensitive and specific biomarkers for screening of high risk individuals and assessment of NPC treatment effectiveness. NPC is an Epstein-Barr virus (EBV) associated tumor in which only a few viral proteins but more than 20 BamHI A rightward transcripts (BART) microRNAs are detected, at abundant levels. We hypothesized that these BART microRNAs may be novel biomarkers for NPC. Systematic analysis of EBV BART microRNA expression profiles in EBV latently infected Mutu I and Mutu III cell lines, EBV-harboring NPC and noncancerous NP cells found that miR-BART3, miR-BART7 and miR-BART13 microRNAs are highly expressed and regularly secreted into the extracellular environment of NPC cells. These BART microRNAs were evaluated for used as potential NPC biomarkers. Analysis of plasma specimens obtained from NPC patients (n 5 89), and healthy (n 5 28) and non-NPC tumor patient controls (n 5 18) found levels of both miR-BART7 and miR-BART13, but not miR-BART3, to be distinctly presence among NPC patients, with elevated levels being particularly apparent among patients with advanced disease. Receiver operating characteristic curve analysis combining miR-BART7 and miR-BART13 levels produces a 90% predictive value for the presence of NPC. Analysis of 41 NPC patients before and after radiotherapy showed that miR-BART7 and miR-BART13, but not miR-BART3, were diminished after treatment. These results indicate that EBV microRNAs, miR-BART7 and miR-BART13, may constitute useful new serological biomarkers for diagnosis of NPC and prediction of treatment efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.