Transfer RNA is heavily modified and plays a central role in protein synthesis and cellular functions. Here we demonstrate that ALKBH3 is a 1-methyladenosine (m1A) and 3-methylcytidine (m3C) demethylase of tRNA. ALKBH3 can promote cancer cell proliferation, migration and invasion. In vivo study confirms the regulation effects of ALKBH3 on growth of tumor xenograft. The m1A demethylated tRNA is more sensitive to angiogenin (ANG) cleavage, followed by generating tRNA-derived small RNAs (tDRs) around the anticodon regions. tDRs are conserved among species, which strengthen the ribosome assembly and prevent apoptosis triggered by cytochrome c (Cyt c). Our discovery opens a potential and novel paradigm of tRNA demethylase, which regulates biological functions via generation of tDRs.
Purpose: Signal transducers and activators of transcription 3 (Stat3), a member of the STAT family of transcription factors, regulates multiple oncogenic pathways, including pathways regulating tumor cell survival.We evaluated Stat3 activation in early stage non^small cell lung cancers (NSCLC) and how this relates to upstream epidermal growth factor receptor (EGFR) activation, tumor apoptosis, and prognosis. Experimental Design: High-density tissue microarrays using tissues from 176 surgically resected NSCLC were evaluated for expression of phosphorylated Stat3 (pStat3) and epidermal growth factor receptor (pEGFR) along with tumor apoptosis. Using NSCLC cell lines, we evaluated how pStat3 expression relates to EGFR mutations and sensitivity of cells to gefitinib. Results: We identified nuclear pStat3 expression in 54% of tumors. pStat3 expression was correlated with smaller tumors (P < 0.0001) and with limited smoking history (P = 0.02).We identified a trend toward higher pStat3 expression in adenocarcinomas compared with other tumor histology (P = 0.09). No relationship was found between pStat3 and prognosis following surgical resection. Importantly, we found a strong positive correlation between pEGFR expression and pStat3 expression (P <0.0001) and an inverse correlation between pStat3 and apoptosis (P = 0.01) consistent with less apoptosis in tumors expressing high amounts of pStat3. Cell lines with mutant EGFR have increased levels of pStat3 compared with cell lines without mutant EGFR and this correlates with their sensitivity to gefitinib. Finally, antisense-mediated knockdown of Stat3 induces apoptosis in EGFR mutant lung cancer cells. Conclusions: Early-stage NSCLC tumors have activated EGFR-Stat3 signaling with low apoptosis. Our findings suggest that pStat3 expression may be helpful in identifying patients appropriate for treatment with EGFR tyrosine kinase inhibitors.
Functional characterization of pseudouridine (Ψ) in mammalian mRNA has been hampered by the lack of a quantitative method that maps Ψ in the whole transcriptome. We report bisulfite-induced deletion sequencing (BID-seq), which uses a bisulfite-mediated reaction to convert pseudouridine stoichiometrically into deletion upon reverse transcription without cytosine deamination. BID-seq enables detection of abundant Ψ sites with stoichiometry information in several human cell lines and 12 different mouse tissues using 10–20 ng input RNA. We uncover consensus sequences for Ψ in mammalian mRNA and assign different ‘writer’ proteins to individual Ψ deposition. Our results reveal a transcript stabilization role of Ψ sites installed by TRUB1 in human cancer cells. We also detect the presence of Ψ within stop codons of mammalian mRNA and confirm the role of Ψ in promoting stop codon readthrough in vivo. BID-seq will enable future investigations of the roles of Ψ in diverse biological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.