High-performance proton exchange membrane fuel cell (PEMFC) vehicles are important for realizing carbon neutrality in transportation. However, the optimal power density of the fuel cell performance is difficult to achieve due to the internal complex operating conditions of a fuel cell stack. Moreover, there is a lack of effective models to solve the coupled multi-physical fields (force, temperature and humidity, etc.) in the PEMFC, particularly considering the gas diffusion layer (GDL) compression. Thus, a force-temperature-humidity coupled modeling method is introduced to evaluate the effects of key operating conditions for the fuel cell performance parameter matching. Firstly, the interfacial contact resistance and GDL porosity are obtained by a force-temperature coupled simulation using a finite element analysis (FEA) modeling, then the obtained results are introduced into a temperature-humidity coupled simulation using a computational fluid dynamics (CFD) modeling. An iteration algorithm is proposed to realize the force-temperature-humidity coupled simulation for the PEMFC performance. The main characteristics of the PEMFC performance parameters are revealed and the optimum matching criteria of the main performance parameters (temperature, stoichiometric ratio and relative humidity) are determined. The presented co-simulation method is significant and effective for realizing the PEMFC performance parameter matching condition, and it provides a design direction for an optimal power density of a fuel cell stack.
High-power proton exchange membrane (PEM) fuel cell vehicles are important for the realization of carbon neutrality in transportation. However, it is difficult to maintain enough fuel supply and quick water removal capacity at a high current density where reactant gas transportation and water concentration are directly affected by flow channel configurations. This study aims to investigate the tapered slope effects of a flow channel on fuel cell performance using a 3-D CFD model. The positive, negative, zero and hybrid tapered slopes are proposed to illustrate the fuel cell voltage, reactant gas and water vapor concentration in the flow channels. Among them, the flow channel with a positive tapered slope performs better, especially at a high current density. Then, the positive tapered slope effects are discussed, including different tapered slopes, inlet depths and widths of flow channels. The results show that the larger the tapered slope, the smaller the depth and width, and the better the fuel cell performs; the corresponding current densities are increased by a maximum of 6.53%, 12.72% and 61.13%. The outcomes stated above provide a key direction for flow channel design that can particularly achieve higher fuel cell power density at high current densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.