Biliary complications are currently one of the leading causes of liver failure and patient death after liver transplantation and need to be solved urgently. Biliary ischemia-reperfusion injury (IRI) is one of the important causes of biliary complications. IL-22 has a protective effect on liver injury and hepatitis diseases, and its safety and efficacy in the treatment of hepatitis have also been proved in human clinical experiments. Furthermore, multiple studies have confirmed that IL-22 promotes the proliferation and repair of epithelial cells in various organs. Still, its function in the bile duct after transplantation has not been explored. This study was aimed at investigating the effects of IL-22 on cholangiocyte IRI in vitro and in vivo and exploring its underlying mechanisms. We simulated the hypoxia process of bile duct epithelial cells through in vitro experiments to investigate the protective function and molecular mechanism of IL-22 on bile duct epithelial cells. Subsequently, the function and mechanism of IL-22 in the biliary IRI model of autologous orthotopic liver transplantation in rats were assessed. This study confirmed that IL-22 could promote cholangiocyte proliferation, decrease the apoptosis rate of cholangiocytes and tissues, decrease MDA levels, and increase SOD levels by activating STAT3. In addition, IL-22 can also reduce the level of mitochondrial membrane depolarization, protect mitochondria, reduce ROS production, and play a role in protecting bile ducts. These findings provide evidence for IL-22 as a novel and effective treatment for biliary IRI after liver transplantation.
Transplant oncology is a newly emerging discipline integrating oncology, transplant medicine, and surgery and has brought malignancy treatment into a new era via transplantation. In this context, obtaining a drug with both immunosuppressive and antitumor effects can take into account the dual needs of preventing both transplant rejection and tumor recurrence in liver transplantation patients with malignancies. Capecitabine (CAP), a classic antitumor drug, has been shown to induce reactive oxygen species (ROS) production and apoptosis in tumor cells. Meanwhile, we have demonstrated that CAP can induce ROS production and apoptosis in T cells to exert immunosuppressive effects, but its underlying molecular mechanism is still unclear. In this study, metronomic doses of CAP were administered to normal mice by gavage, and the spleen was selected for quantitative proteomic and phosphoproteomic analysis. The results showed that CAP significantly reduced the expression of HSP90AB1 and SMARCC1 in the spleen. It was subsequently confirmed that CAP also significantly reduced the expression of HSP90AB1 and SMARCC1 and increased ROS and apoptosis levels in T cells. The results of in vitro experiments showed that HSP90AB1 knockdown resulted in a significant decrease in p-Akt, SMARCC1, p-c-Fos, and p-c-Jun expression levels and a significant increase in ROS and apoptosis levels. HSP90AB1 overexpression significantly inhibited CAP-induced T cell apoptosis by increasing the p-Akt, SMARCC1, p-c-Fos, and p-c-Jun expression levels and reducing the ROS level. In conclusion, HSP90AB1 is a key target of CAP-induced T cell apoptosis via Akt/SMARCC1/AP-1/ROS axis, which provides a novel understanding of CAP-induced T cell apoptosis and lays the experimental foundation for further exploring CAP as an immunosuppressant with antitumor effects to optimize the medication regimen for transplantation patients.
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Therefore, finding new diagnostic and therapeutic targets is vital for HCC patients. Recent studies have shown that dysregulation of RNA-binding proteins is often associated with cancer progression. Several studies have reported that the RNA-binding protein SSB can promote cancer occurrence and progression and is linked to tumor epithelial-mesenchymal transition (EMT), which could be a new diagnostic marker and therapeutic target. However, the expression and function of SSB in HCC remain to be elucidated. Therefore, this study is aimed at clarifying the expression and biological function of SSB in HCC through bioinformatics analysis combined with in vitro experiments. We found that SSB is highly expressed in HCC and is associated with the poor prognosis of HCC patients, and it can serve as an independent unfavorable prognostic factor. Knockdown of SSB can inhibit the growth of HCC cells in vitro, increase the level of apoptosis and the expression of pro-apoptosis-related proteins, and decrease the expression of antiapoptotic proteins. Meanwhile, SSB knockdown reduced HCC cell invasiveness, and the expression of EMT-related proteins changed significantly. We also found that the gene SSB was associated with the level of oxidative stress in liver cancer cells, and the level of intracellular reactive oxygen species (ROS) increased after knockdown of SSB. The results of bioinformatics analysis also showed that high expression of SSB may affect the effect of checkpoint blockade (ICB) therapy. In conclusion, we found that SSB is highly expressed in HCC and that upregulated SSB can promote the proliferation and metastasis of HCC through antiapoptotic, altered intracellular oxidative stress level, and EMT pathways, which can serve as a new diagnostic marker and therapeutic target, and patients with high SSB expression may not have obvious ICB therapy effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.