Formulation research is oriented towards safety, efficacy and quick onset of action of existing drug molecule through novel concepts of drug delivery. Orally disintegrating tablets of Rizatriptan benzoate were prepared by direct compression method to provide faster relief from pain to migraine sufferers. About eleven formulations for the present study were carried out. Croscarmellose sodium, Crospovidone and Sodium starch glycolate (SSG) were used as superdisintegrants, while microcrystalline cellulose was used as diluent. The prepared batches of tablets were evaluated for weight variation, hardness, friability, wetting time, invitro dispersion time, drug content and invitro dissolution studies. The formulation containing combination of Croscarmellose sodium and Sodium starch glycolate showed rapid invitro dispersion time as compared to other formulations. The optimized formulation dispersed in 8 seconds. It also showed a higher water absorption ratio and 99.58% of drug is released within 2 minutes.
Gastro retentive drug delivery systems have been widely used to prolong the retention of dosage forms in the stomach. Among the various approaches, the floating in-situ gelling formulation offers sustained drug release as well as prolonged gastric retention, along with the added advantage of the liquid oral dosage form. The present study was an attempt to formulate and evaluate floating in situ gel of Eplerenone by using various polymers like Xanthan gum, Carbopol, HPMC K100M, and Karaya gum which undergoes pH dependant sol-gel transition at gastric pH, thereby prolonging the retention of the system in the stomach. Sodium alginate a natural polymer was employed as a gelling agent where Gelation is triggered by the source of calcium ions in the form of calcium carbonate. Drug and polymers were subjected for compatibility study using FTIR studies, which revealed that there was no interaction between drugs and polymers. The evaluation was carried out for invitro parameters such as gelling nature, Total floating time, drug content, viscosity, & in vitro dissolution studies. Among all the formulations, the F12 formulation containing HPMC K100M was chosen as an optimized formulation that shows maximum drug release by the end of 12hrs and has excellent floating characteristics and gastric retention. From kinetic studies, the optimized formulation shows zero-order release with super case II transport mechanism.
In the present research work, Febuxostat Immediate Release Tablet was prepared by direct compression method using varying concentrations of Lycoat, Crospovidone& Croscarmellose sodium as disintegrants. The formulations prepared were evaluated for precompression& post-compression parameters. From the drug excipient compatibility studies, we observe that there are no interactions between the pure drug (Febuxostat) and optimized formulation (Febuxostat+ excipients) which indicates there are no physical changes. Post compression parameters were found to be within the limits. Among the formulation prepared the tablet containing 12mg of CCS shows 98.13% of the drug release within 45 min & follows first-order kinetics.
The present research project aimed to develop a Control release oral Oxcarbazepine tablets by using Polymers like Tamarind gum, Xanthan gum, HPMC K4M, and HPMC K 15M were used for controlling the drug release, and the polymers are mixed in a predetermined ratio. Totally 12 formulations were prepared and evaluated for pre-compression and post-compression parameters, and all the results were found to be within the limits. From the drug and excipients compatibility studies(FT-IR) it was confirmed that the drug and excipients have any interactions. The in vitro dissolution studies revealed that the F12 formulation containing 18% of HPMC K4M & 18% of HPMC K15M controls the drug release up to 12hours. So F12 formulation was considered to be suitable for the formulation of Oxcarbazepine controlled-release tablets at 18% concentration of HPMC K4M & 18% concentration of HPMC K15M and the drug release kinetics revealed that the F12 formulation shows a super case II transport mechanism.
The present work is to formulation and evaluation of Ofloxacin of microencapsulated suspension by using solvent evaporation method. The Preparation contains six formulations of suspensions with 2 different polymers with different concentrations as Ofloxacin resinate + HPMC, Ofloxacin resinate + Carbopol 934. The prepared batches of Ofloxacin microencapsulated suspension were evaluated for the pH, viscosity, sedimentation volume; density, drug content and antibacterial activity of all the six formulations were performed. Formulations F-3, F-6 gave better sustained release and antibacterial activity. Comparative study of F-3, F-6 with marketed product reveal the F-3 is best fitted formulation for preparation of microencapsulated suspension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.