We report, for the first time, the influence of oxygen vacancies on band structure and local electronic structure of $$\hbox {SrZnO}_2$$ SrZnO 2 (SZO) nanophosphors by combined first principle calculations based on density functional theory and full multiple scattering theory, correlated with experimental results obtained from X-ray absorption and photoluminescence spectroscopies. The band structure analysis from density functional theory revealed the formation of new energy states in the forbidden gap due to introduction of oxygen vacancies in the system, thereby causing disruption in intrinsic symmetry and altering bond lengths in SZO system. These defect states are anticipated as origin of observed photoluminescence in SZO nanophosphors. The experimental X-ray absorption near edge structure (XANES) at Zn and Sr K-edges were successfully imitated by simulated XANES obtained after removing oxygen atoms around Zn and Sr cores, which affirmed the presence and signature of oxygen vacancies on near edge structure.
This work demonstrates that black phosphorene, a two dimensional allotrope of phosphorus, has the potential to be an efficient photo-thermionic emitter. To investigate and understand the novel aspects we use a combined approach in which ab initio quantum simulation tools are utilized along with semiclassical description for the emission process. First by using density functional theory based formalism, we study the band structure of phosphorene. From the locations of electronic bands, and band edges, we estimate the Fermi level and work function. This leads us to define a valid material specific parameter space and establish a formalism for estimating thermionic electron emission current from phosphorene. Finally we demonstrate how the emission current can be enhanced substantially under the effect of photon irradiation. We observe that photoemission flux to strongly dominate over its coexisting counterpart thermionic emission flux. Anisotropy in phosphorene structure plays important role in enhancing the flux. The approach which is valid over a much wider range of parameters is successfully tested against recently performed experiments in a different context. The results open up a new possibility for application of phosphorene based thermionic and photo-thermionic energy converters.
In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler’s mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.