Chinese liquor aroma components were characterized during the aging process using gas chromatography (GC). Principal component and cluster analysis (PCA, CA) were used to discriminate the Chinese liquor age which has a great economic value. Of a total of 21 major aroma components identified and quantified, 13 components which included several acids, alcohols, esters, aldehydes and furans decreased significantly in the first year of aging, maintained the same levels (p > 0.05) for next three years and decreased again (p < 0.05) in the fifth year. On the contrary, a significant increase was observed in propionic acid, furfural and phenylethanol. Ethyl lactate was found to be the most stable aroma component during aging process. Results of PCA and CA demonstrated that young liquor (fresh) and aged liquors were well separated from each other, which is in consistent with the evolution of aroma components along with the aging process. These findings provide a quantitative basis for discriminating the Chinese liquor age and a scientific basis for further research on elucidating the liquor aging process, and a possible tool to guard against counterfeit and defective products.
The removal of 12 pharmaceuticals and personal care products (PPCPs) in two full-scale wastewater treatment plants (WWTPs) and a tertiary treatment system was studied. The ecological risks of effluents from both secondary and tertiary treatment systems as well as excess sludge were evaluated. Primary treatment and ultraviolet light disinfection showed limited ability to remove most selected PPCPs. The combination of an anaerobic process and triple-oxidation ditches can eliminate DEET better than the anaerobic/anoxic/oxic process. Adsorption to sludge played a key role in the removal of triclocarban. Multistage constructed wetlands as a tertiary treatment efficiently removed caffeine and ibuprofen from wastewater and could decrease the risk of partial selected PPCPs. Selected PPCPs residues in excess sludge generally produced higher risks to the ecological environment than effluents from WWTPs.
These results indicate that hospitals are more concentrated sources of pharmaceuticals than WWTPs, and the WWTPs are not the only route of entry of pharmaceuticals into aquatic environments in these two regions.
The economic value of Chinese liquor is closely related with its age. Results from gas chromatograph (GC) analysis indicated that 8 dominant compounds were decreased with the increase of liquor age (0 to 5 years) while ethyl lactate was found to be the most stable dominant compound as no significant change was observed in it during the aging process. Liquor groups with different ages were well-discriminated by principal component analysis (PCA) based on electronic nose signals. High-accurate identification of liquor ages was realized using linear discriminant analysis (LDA) with the accuracy of 98.3% of the total 120 samples from six age groups. Partial least squares regression (PLSR) exhibited satisfying ability for liquor age prediction (R2: 0.9732 in calibration set and 0.9101 in validation set). The feasibility of volatile compounds prediction using PLSR combined with electronic nose was also verified by this research. However, the accuracies of PLSR models can be further promoted in future researches, perhaps by using more suitable sensors or modeling approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.