AbstractThis article reports some morphological, tribological, and mechanical data on polyamide-11(PA11)/halloysite nanotube (HNT) nanocomposites prepared by melt-compounding. HNTs extracted from the Djebel Debbagh deposit in Algeria were incorporated into the polymer at 1, 3, and 5 wt%. For comparison, commercial HNTs were also used under the same processing conditions. Scanning electron microscopy showed that both HNTs were homogeneously dispersed in the PA11 matrix, despite the presence of few aggregates, in particular at higher filler contents. The tribological properties were significantly improved, resulting in a decrease in the friction coefficient and the wear rate characteristics due to the lubricating effect of HNTs. This is consistent with optical profilometry data, which evidenced the impact of both types of HNTs on the surface topography of the nanocomposite samples, in which the main wear process was plastic deformation. Furthermore, Young’s modulus and tensile strength were observed to increase with the filler content, but to the detriment of elongation at break and impact strength. Regarding the whole data, the raw Algerian halloysite led to interesting results in PA11 nanocomposites, thus revealing its potential in polymer engineering nanotechnology.
This work aims to study the effect of chemical treatments of date stone flour (DSF) as a filler on the elastic properties of biocomposites based on green epoxy resin (GER) used as a matrix. The main disadvantages of natural reinforcements in biocomposites are the poor compatibility between the reinforcement and the matrix as well as the relatively high moisture sorption. Different chemical treatments using soda (alkaline), benzoyl chloride, and potassium permanganate were applied to the DSF filler. Then, the filler was incorporated into the matrix at 30 wt % to obtain GER/DSF biocomposites. The elastic properties of the biocomposites, namely, longitudinal modulus, shear modulus, bulk modulus, Young's modulus of elasticity, acoustic impedance, Poisson's ratio, and ultrasonic microhardness, were determined using ultrasonic through-transmission method. In addition, the morphology was studied using microscopy analysis. The results obtained revealed a decrease of the elastic properties of the pretreated-filler biocomposite compared to the pure GER. On the other hand, the chemical treatment of the filler leads to an improvement of the elastic properties of GER/DSF biocomposites. The permanganate treatment is the most suitable for GER/DSF biocomposites. The morphology analysis through optical microscopy and scanning electron microscopy showed that chemical treatments enhance the interfacial adhesion between the DSF filler and the GER matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.