We report on photoassisted and multiphoton electron emission from single-crystal diamond needles and we explore their emission properties.
A method to distinguish a hidden object from a perturbing environment is to use an ultrashort femtosecond pulse of light and a time-resolved detection. To separate ballistic light containing information on a hidden object from multiscattered light coming from the surrounding environment that scrambles the signal, an optical Kerr gate can be used. It consists of a carbon disulfide (CS(2)) cell in which birefringence is optically induced. An imaging beam passes through the studied medium while a pump pulse is used to open the gate. The time-delayed scattered light is excluded from measurements by the gate, and the multiple-scattering scrambling effect is reduced. In previous works, the two beams had the same wavelength. We propose a new two-color experimental setup for ballistic imaging in which a second harmonic is generated and used for the image, while the fundamental is used for gate switching. This setup allows one to obtain better resolution by using a spectral filtering to eliminate noise from the pump pulse, instead of a spatial filtering. This new setup is suitable for use in ballistic imaging of dense sprays, multidiffusive, and large enough to show scattered light time delays greater than the gate duration (tau=1.3 ps).
Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of the Kerr medium, which eliminates crossing angle spatial effects and produces gate times on the order of 1 ps. In addition, the collinear, two-color system is applied to image structure in an optical fiber and a gasoline fuel spray, in order to demonstrate image formation utilizing ballistic or refracted light, selected on the basis of its transmission time. 16, 1868-1870 (1991). 9. K. M. Yoo, Q. Xing, and R. R. Alfano, "Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating," Opt. Lett. 16, 1019Lett. 16, -1021Lett. 16, (1991. 10. S. Idlahcen, C. Rozé, L. Méès, T. Girasole, and J.-B. Blaisot, "Sub-picosecond ballistic imaging of a liquid jet,"Exp. Fluids 52, 289-298 (2011). 11. L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, "Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate," Science 253, 769-771 (1991). 12. R. Alfano, ed., Semiconductors probed by ultrafast laser spectroscopy (Academic, 1984, vol. II
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.