The world is currently facing critical water and energy issues due to the growing population and industrialization, calling for methods to obtain potable water, e.g., by photocatalysis, and to convert solar energy into fuels such as chemical or electrical energy, then storing this energy. Energy storage has been recently improved by using electrochemical capacitors and ion batteries. Research is actually focusing on the synthesis of materials and hybrids displaying improved electronic, physiochemical, electrical, and optical properties. Here, we review molybdenum disulfide (MoS2) materials and hybrids with focus on synthesis, electronic structure and properties, calculations of state, bandgap and charge density profiles, and applications in energy storage and water remediation.
Herein, this study introduced a novel strategy for hazardous cement bypass dust (CBD) removal via incorporated it into glassy system having the chemical formula 10Li2O–10Bi2O3–(80 − x)B2O3–xCBD, where x = 0, 10, 20 and 30%. The doped glass samples with the CBD were used as a radiation shielding material. The structural, optical and nuclear radiation shielding properties of CBD-lithium bismuth borate (LBB) glass were investigated. The optical energy gap increases from 2.22 eV for LBB + 0% CBD glass sample to 2.66 eV for LBB + 30% CBD glass sample. Also, a comparative study between the experimental data and theoretical interpretation for the attenuation coefficients was addressed via the Phy-X software database. The outcomes unveiled that the shielding parameters such as the linear attenuation coefficient, mass attenuation coefficient, and the effective atomic number were enhanced as CBD content increases. In the same time, the half-value layer, the tenth value layer, and the mean free path are reduced with the enrichment in the CBD content. Furthermore, the exposure build-up factor is inversely related to equivalent atomic numbers. Based on these findings, it was determined that the manufactured bismuth lithium-borate glass system doped cement bypass dust can be used for radiation shielding purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.