Arabic printed script segmentation and recognition techniques change from font to other i.e. each font has particular properties calligraphic and structural which differ with other. Majority of segmentation system suffer in word or sub word segmentation into characters because they consider one algorithm to segment all kind of Arabic printed font, style and size. The goal of this work is to prepare a system of word or sub word Optical Font Arabic Recognition (OFAR) for different font size and style of Arabic printed script, in order to integrate it in global Arabic Optical Character Recognition (AOCR) to choose preferred and good segmentation algorithm. APTI database was used to extract last ten pixels for each word or sub word to build new database of last 10 pixels for each word; OFAR is based upon this new database and our extraction approach called Pixels Continuity (PC) algorithm in different matrix direction and some histogram statistics to extract 20 features. Three KNN classifiers with K=5 and three different distances using Cityblock, Euclidean and Correlation based upon majority-vote are used to evaluate the system robustness. This classifier is compared in the first time with Back propagation Neural Network and Steerable Pyramid (SP) algorithm to re cognize three font families, then in the second time with Gaussian Mixture Models (GMMs) to recognize font and size. The average recognition results obtained was 99.55% about font and size and 98.17% for font, size and style recognition.
This paper presents a new method called density weight and zigzag sequence to recognize printed Arabic names. This technique was performed on two steps, the first aims to reduce matrix size of 96x96 into 12x12 using density weight techniques, in the second step the last matrix (12x12) was used to extract 144 sequences following path zigzag technique. 144 features found are used for representing each name in data set. This proposed technique was tested on Morocco town and village names using KNN with consensus rule and SVM classifiers. The perfect score was obtained with KNN (k=9) and SVM (linear kernel).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.