We present an open-source speech corpus for the Kazakh language. The Kazakh speech corpus (KSC) contains around 335 hours of transcribed audio comprising over 154,000 utterances spoken by participants from different regions, age groups, and gender. It was carefully inspected by native Kazakh speakers to ensure high quality. The KSC is the largest publicly available database developed to advance various Kazakh speech and language processing applications. In this paper, we first describe the data collection and prepossessing procedures followed by the description of the database specifications. We also share our experience and challenges faced during database construction. To demonstrate the reliability of the database, we performed the preliminary speech recognition experiments. The experimental results imply that the quality of audio and transcripts are promising. To enable experiment reproducibility and ease the corpus usage, we also released the ESPnet recipe.2 https://issai.nu.edu.kz/ kz-speech-corpus/
We present an open-source speech corpus for the Kazakh language. The Kazakh speech corpus (KSC) contains around 332 hours of transcribed audio comprising over 153,000 utterances spoken by participants from different regions and age groups, as well as both genders. It was carefully inspected by native Kazakh speakers to ensure high quality. The KSC is the largest publicly available database developed to advance various Kazakh speech and language processing applications. In this paper, we first describe the data collection and preprocessing procedures followed by a description of the database specifications. We also share our experience and challenges faced during the database construction, which might benefit other researchers planning to build a speech corpus for a low-resource language. To demonstrate the reliability of the database, we performed preliminary speech recognition experiments. The experimental results imply that the quality of audio and transcripts is promising (2.8% character error rate and 8.7% word error rate on the test set). To enable experiment reproducibility and ease the corpus usage, we also released an ESPnet recipe for our speech recognition models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.