Background: Visual outcomes provided by present retinal prostheses that primarily target retinal ganglion cells (RGCs) through epiretinal stimulation remain rudimentary, partly due to the limited knowledge of retinal responses under electrical stimulation. Better understanding of how different retinal regions can be quantitatively controlled with high spatial accuracy, will be beneficial to the design of micro-electrode arrays (MEAs) and stimulation strategies for next-generation wide-view, high-resolution epiretinal implants. Methods: A computational model was developed to assess neural activity at different eccentricities (2 mm and 5 mm) within the human retina. This model included midget and parasol RGCs with anatomically accurate cell distribution and cell-specific morphological information. We then performed in silico investigations of region-specific RGC responses to epiretinal electrical stimulation using varied electrode sizes (5 µm – 210 µm diameter), emulating both commercialized retinal implants and recently-developed prototype devices. Results: Our model of epiretinal stimulation predicted RGC population excitation analogous to the complex percepts reported in human subjects. Following this, our simulations suggest that midget and parasol RGCs have characteristic regional differences in excitation under preferred electrode sizes. Relatively central (2 mm) regions demonstrated higher number of excited RGCs but lower overall activated receptive field (RF) areas under the same stimulus amplitudes (two-way ANOVA, p < 0.05). Furthermore, the activated RGC numbers per unit active RF area (number-RF ratio) were significantly higher in central than in peripheral regions, and higher in the midget than in the parasol population under all tested electrode sizes (two-way ANOVA, p < 0.05). Our simulations also suggested that smaller electrodes exhibit a higher range of controllable stimulation parameters to achieve pre-defined performance of RGC excitation. ..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.