Deep neural networks (DNN) have proven to be efficient in computer vision and data classification with an increasing number of successful applications. Time series classification (TSC) has been one of the challenging problems in data mining in the last decade, and significant research has been proposed with various solutions, including algorithm-based approaches as well as machine and deep learning approaches. This paper focuses on combining the two well-known deep learning techniques, namely the Inception module and the Fully Convolutional Network. The proposed method proved to be more efficient than the previous state-of-the-art InceptionTime method. We tested our model on the univariate TSC benchmark (the UCR/UEA archive), which includes 85 time-series datasets, and proved that our network outperforms the InceptionTime in terms of the training time and overall accuracy on the UCR archive.
Distance estimation is one of the oldest and most challenging tasks in computer vision using only a monocular camera. This can be challenging owing to the presence of occlusions, noise, and variations in the lighting, texture, and shape of objects. Additionally, the motion of the camera and objects in the scene can affect the accuracy of the distance estimation. Various techniques have been proposed to overcome these challenges, including stereo matching, structured light, depth from focus, depth from defocus, depth from motion, and time of flight. The addition of information from a high-resolution 3D view of the surroundings simplifies the distance calculation. This paper describes a novel distance estimation method that operates with converted point cloud data. The proposed method is a reliable map-based bird’s eye view (BEV) that calculates the distance to the detected objects. Using the help of the Euler-region proposal network (E-RPN) model, a LiDAR-to-image-based method for metric distance estimation with 3D bounding box projections onto the image was proposed. We demonstrate that despite the general difficulty of the BEV representation in understanding features related to the height coordinate, it is possible to extract all parameters characterizing the bounding boxes of the objects, including their height and elevation. Finally, we applied the triangulation method to calculate the accurate distance to the objects and statistically proved that our methodology is one of the best in terms of accuracy and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.