The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.
Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak et al., Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wave functions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.
We investigate femtosecond photoassociation of thermally hot atoms in the gas phase and its coherent control. In the photoassociation process, formation of a chemical bond is facilitated by light in a free-to-bound optical transition. Here, we study free-to-bound photoassociation of a diatomic molecule induced by femtosecond pulses exciting a pair of scattering atoms interacting via the van-der-Waals-type electronic ground state potential into bound levels of an electronically excited state. The thermal gas of reactants is at temperatures in the range of hundreds of degrees. Despite this incoherent initial state, rotational and vibrational coherences are observed in the probing of the created Mg2 molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.