We propose, analyze, and simulate a configuration to realize all-optical logic gates based on nanoring insulator-metal-insulator (IMI) plasmonic waveguides. The proposed plasmonic logic gates are numerically analyzed by finite element method. The analyzed gates are NOT, OR, AND, NOR, NAND, XOR, and XNOR. The operation principle of these gates is based on the constructive and destructive interferences between the input signal(s) and the control signal. The suggested value of transmission threshold between logic 0 and logic 1 states is 0.25. The suggested value of the transmission threshold achieves all seven plasmonic logic gates in one structure. We use the same structure with the same dimensions at 1550-nm wavelength for all proposed plasmonic logic gates. Although we realize seven gates, in some cases, the transmission of the proposed plasmonic logic gates exceeds 100%, for example, in OR gate (175%), in NAND gate (112.3%), and in XNOR gate (175%). As a result, the transmission threshold value measures the performance of the proposed plasmonic logic gates. Furthermore, the proposed structure is designed with a very small area (400 nm × 400 nm). The proposed all-optical logic gates structure significantly contributes to the photonic integrated circuits construction and all-optical signal processing nanocircuits. , many all-optical plasmonic structures provided nanoscale logic gates. [25][26][27][28][29] Each nanologic gate has a different way to realize the functions of the gates, a different number
In this paper, we propose, analyze and simulate a new configuration to simulate all-optical combinational logic functions based on Nano-rings insulator-metal-insulator (IMI) plasmonic waveguides. We used Finite Element Method (FEM) to analyze the proposed plasmonic combinational logic functions. The analyzed combinational logic functions are Half-Adder, Full-Adder, Half-Subtractor, and Comparator One-Bit. The operation principle of these combinational logic functions is based on the constructive and destructive interferences between the input signal(s) and control signal. Numerical simulations show that a transmission threshold exists (0.25) which allows all proposed four plasmonic combinational logic functions to be achieved in one structure. As a result, the transmission threshold value measures the performance of the proposed plasmonic combinational logic functions. We use the same structure with the same dimensions at 1550 nm wavelength for all proposed plasmonic combinational logic functions. The proposed all-optical combinational logic functions structure contributes significantly to photonic integrated circuits construction and all-optical signal processing nano-circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.