Developing systems for interpreting visuals, such as images, videos is really challenging but important task to be developed and applied on benchmark datasets. This study solves the very challenge by using STN-OCR model consisting of deep neural networks (DNN) and Spatial Transformer Networks (STNs). The network architecture of this study consists of two stages: localization network and recognition network. In the localization network it finds and localizes text regions and generates sampling grid. Whereas, in the recognition network, text regions will be input and then this network learns to recognize text including low resolution, curved and multioriented text. Deep learning-based approaches require a lot of data for training effectively, therefore, this study has used two benchmark datasets, Street View House Numbers (SVHN) and International Conference on Document Analysis and Recognition (ICDAR) 2015 to evaluate the system. The STN-OCR model achieves better results than literature on these datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.