Abstract-We consider the multi-user MIMO broadcast channel with M single-antenna users and N transmit antennas under the constraint that each antenna emits signals having constant envelope (CE). The motivation for this is that CE signals facilitate the use of power-efficient RF power amplifiers. Analytical and numerical results show that, under certain mild conditions on the channel gains, for a fixed M , an array gain is achievable even under the stringent per-antenna CE constraint. Essentially, for a fixed M , at sufficiently large N the total transmitted power can be reduced with increasing N while maintaining a fixed information rate to each user. Simulations for the i.i.d. Rayleigh fading channel show that the total transmit power can be reduced linearly with increasing N (i.e., an O(N ) array gain). We also propose a precoding scheme which finds near-optimal CE signals to be transmitted, and has O(M N ) complexity. Also, in terms of the total transmit power required to achieve a fixed desired information sum-rate, despite the stringent per-antenna CE constraint, the proposed CE precoding scheme performs close to the sum-capacity achieving scheme for an average-only total transmit power constrained channel.
Abstract-Multi-user multiple-input multiple-output (MU-MIMO) cellular systems with an excess of base station (BS) antennas (Massive MIMO) offer unprecedented multiplexing gains and radiated energy efficiency. Oscillator phase noise is introduced in the transmitter and receiver radio frequency chains and severely degrades the performance of communication systems. We study the effect of oscillator phase noise in frequency-selective Massive MIMO systems with imperfect channel state information (CSI). In particular, we consider two distinct operation modes, namely when the phase noise processes at the M BS antennas are identical (synchronous operation) and when they are independent (nonsynchronous operation). We analyze a linear and low-complexity time-reversal maximum-ratio combining (TR-MRC) reception strategy. For both operation modes we derive a lower bound on the sum-capacity and we compare their performance. Based on the derived achievable sum-rates, we show that with the proposed receive processing an O( √ M ) array gain is achievable. Due to the phase noise drift the estimated effective channel becomes progressively outdated. Therefore, phase noise effectively limits the length of the interval used for data transmission and the number of scheduled users. The derived achievable rates provide insights into the optimum choice of the data interval length and the number of scheduled users.Index Terms-Receiver algorithns, MU-MIMO, phase noise.
Large antenna arrays at the transmitter (TX) has recently been shown to achieve remarkable intra-cell interference suppression at low complexity. However, building large arrays in practice, would require the use of power-efficient RF amplifiers, which generally have poor linearity characteristics and hence would require the use of input signals with a very small peak-to-average power ratio (PAPR). In this paper, we consider the singleuser Multiple-Input Single-Output (MISO) channel for the case where the TX antennas are constrained to transmit signals having constant envelope (CE). We show that, with per-antenna CE transmission the effective channel seen by the receiver is a SISO AWGN channel with its input constrained to lie in a doughnut-shaped region. For a broad class of fading channels, analysis of the effective doughnut channel shows that under a per-antenna CE input constraint, i) compared to an average-only total TX power constrained MISO channel, the extra total TX power required to achieve a desired information rate is small and bounded, ii) with N TX antennas an O(N ) array power gain is achievable, and iii) for a desired information rate, using power-efficient amplifiers with CE inputs would require significantly less total TX power when compared to using highly linear (power-inefficient) amplifiers with high PAPR inputs.
Abstract-A single carrier transmission scheme is presented for the frequency selective multi-user (MU) multiple-input singleoutput (MISO) Gaussian Broadcast Channel (GBC) with a base station (BS) having M antennas and K single antenna users. The proposed transmission scheme has low complexity and for M ≫ K it is shown to achieve near optimal sum-rate performance at low transmit power to receiver noise power ratio. Additionally, the proposed transmission scheme results in an equalization-free receiver and does not require any MU resource allocation and associated control signaling overhead. Also, the sum-rate achieved by the proposed transmission scheme is shown to be independent of the channel power delay profile (PDP). In terms of power efficiency, the proposed transmission scheme also exhibits an O(M ) array power gain. Simulations are used to confirm analytical observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.