Peer-to-peer (P2P) energy management is one of the most viable solutions to incentivize prosumers in renewable energy microgrids. As the application of blockchain expends from the finance field to energy field, blockchain technology provides a new opportunity for distributed energy systems. However, a distributed energy system based on blockchains allows any node in the whole network to read data. In many application scenarios, user privacy cannot be effectively protected, and there is a security problem that the attack cannot be traced. In this paper, we propose an energy management mode based on a permissioned blockchain for a renewable energy microgrid. The novel permissioned blockchain framework uses entity mapping with a unique identity for each enterprise, natural person, or device, in order to avoid ineligible participants to join the microgrid. Each peer entity keeps the transaction information index of the whole network, but only keeps its own specific transaction information, so they can retrieve the transaction information of other peer entities but cannot obtain the details without permission. Moreover, this model could avoid communication delays and promote plug-and-play due to the distributed nature of the permissioned blockchain. The performance of the proposed method is evaluated with a demonstration program which is designed and deployed on a Hyperledger Fabric permissioned blockchain. Simulation results show the feasibility of the proposed method, and the model is conducive to the protection privacy and P2P energy management for decentralized energy systems.
Solar energy has attracted the attention of researchers around the world due to its advantages. However, photovoltaic (PV) panels still have not attained the desired efficiency and economic mature. PV tracking techniques can play a vital role in improving the performance of the PV system. The aim of this paper is to evaluate and compare the technical and economic performance of grid-connected hybrid energy systems including PV and fuel cells (FC) by applying major types of PV tracking technique. The topology and design principles and technical description of hybrid system components are proposed in this paper. Moreover, this paper also introduces economic criteria, which are used to evaluate the economy of different PV tracking techniques and seek the optimal configuration of system components. In the case study, the results show that the vertical single axis tracker was ranked 1st in terms of highest PV generation, penetration of renewable energy to the grid, lowest CO2 emission, highest energy sold to the grid and lowest purchased, and lowest net present cost (NPC) and levelized cost of energy (LCOE). The study found that the optimal design of a grid-connected hybrid energy system (PV-FC) was by using a vertical single axis tracker which has the lowest NPC, LCOE.
Due to their intermittent nature, the use of renewable energy sources has faced the challenges of power insecurity and low efficiency. Recently, fuel cells (FCs) have become a potential choice for backup-power generation in remote microgrids due to their reduced maintenance needs and long lifecycle. However, the efficiency of hydrogen FCs as backup power needs to be improved. The efficiency is related to system sizing and operational techniques. Thus, this paper proposes an efficient energy management strategy and optimal configuration models based on a hybrid system including photovoltaics (PVs) and hydrogen FCs to achieve a high operational efficiency and optimize the system configuration. The system model is built, and an energy management strategy is proposed first. This strategy determines when the PV and FC supply power to a load under various conditions. Proper sizing of the sub-components in the PV/FC hybrid system also plays an essential role in ensuring continuous power flow. To ensure power quality, the hybrid system configuration is estimated using a systematic method without affecting the power quality to minimize residual power losses. In addition, various essential simulations are performed to verify the proposed model. The results indicate that the total efficiency of the system can reach 47.9%.
Global warming and climate change are becoming a global concern. In this regard, international agreements and initiatives have been launched to accelerate the use of renewable energy and to mitigate greenhouse gas (GHG) emissions. Yemen is one of the countries signed on these agreements. However, Yemen is facing the problem that the structure of the power grid is fragile and the power shortage is serious. Accordingly, this paper aims to study the potential for renewable energy in Yemen and assess the technical and economic feasibility of hybrid energy systems. Firstly, this paper introduces the status and challenges of Yemen’s electricity sector, the status of renewable energy, and the status of GHG emission. Secondly, this study proposes the method of optimizing different configurations of off-grid hybrid (solar/wind/diesel engine) energy systems for electrifying various consumers in Taiz province, Yemen under three scenarios of energy strategies. The objective function is to seek the most optimal hybrid energy system that achieves the least cost and most advantageous technical performance, while instigating the best economic scenario of energy strategies. Finally, Homer pro software is used for simulation, optimization, and sensitivity analysis of the designed energy systems. The results found the best economically feasible scenario, the hybrid PV/wind/diesel energy system, among the other scenarios. A photovoltaic (PV)/wind energy system achieved the best technical performances of 100% CO2 reduction, with a 54.82% reduction in the net present cost (NPC) and cost of energy (COE); while the hybrid energy system (PV/wind/diesel engine) achieved the best economic cost of 61.95% reduction in NPC and COE, with a 97.44% reduction of CO2 emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.