The increasing use of Internet of Things (IoT) applications in various aspects of our lives has created a huge amount of data. IoT applications often require the presence of many technologies such as cloud computing and fog computing, which have led to serious challenges to security. As a result of the use of these technologies, cyberattacks are also on the rise because current security methods are ineffective. Several artificial intelligence (AI)-based security solutions have been presented in recent years, including intrusion detection systems (IDS). Feature selection (FS) approaches are required for the development of intelligent analytic tools that need data pretreatment and machine-learning algorithm-performance enhancement. By reducing the number of selected features, FS aims to improve classification accuracy. This article presents a new FS method through boosting the performance of Gorilla Troops Optimizer (GTO) based on the algorithm for bird swarms (BSA). This BSA is used to boost performance exploitation of GTO in the newly developed GTO-BSA because it has a strong ability to find feasible regions with optimal solutions. As a result, the quality of the final output will increase, improving convergence. GTO-BSA’s performance was evaluated using a variety of performance measures on four IoT-IDS datasets: NSL-KDD, CICIDS-2017, UNSW-NB15 and BoT-IoT. The results were compared to those of the original GTO, BSA, and several state-of-the-art techniques in the literature. According to the findings of the experiments, GTO-BSA had a better convergence rate and higher-quality solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.