In the telecom sector, a huge volume of data is being generated on a daily basis due to a vast client base. Decision makers and business analysts emphasized that attaining new customers is costlier than retaining the existing ones. Business analysts and customer relationship management (CRM) analyzers need to know the reasons for churn customers, as well as, behavior patterns from the existing churn customers' data. This paper proposes a churn prediction model that uses classification, as well as, clustering techniques to identify the churn customers and provides the factors behind the churning of customers in the telecom sector. Feature selection is performed by using information gain and correlation attribute ranking filter. The proposed model first classifies churn customers data using classification algorithms, in which the Random Forest (RF) algorithm performed well with 88.63% correctly classified instances. Creating effective retention policies is an essential task of the CRM to prevent churners. After classification, the proposed model segments the churning customer's data by categorizing the churn customers in groups using cosine similarity to provide group-based retention offers. This paper also identified churn factors that are essential in determining the root causes of churn. By knowing the significant churn factors from customers' data, CRM can improve productivity, recommend relevant promotions to the group of likely churn customers based on similar behavior patterns, and excessively improve marketing campaigns of the company. The proposed churn prediction model is evaluated using metrics, such as accuracy, precision, recall, f-measure, and receiving operating characteristics (ROC) area. The results reveal that our proposed churn prediction model produced better churn classification using the RF algorithm and customer profiling using k-means clustering. Furthermore, it also provides factors behind the churning of churn customers through the rules generated by using the attribute-selected classifier algorithm.
Dealing with air pollution presents a major environmental challenge in smart city environments. Real-time monitoring of pollution data enables local authorities to analyze the current traffic situation of the city and make decisions accordingly. Deployment of the Internet of Things-based sensors has considerably changed the dynamics of predicting air quality. Existing research has used different machine learning tools for pollution prediction; however, comparative analysis of these techniques is required to have a better understanding of their processing time for multiple datasets. In this paper, we have performed pollution prediction using four advanced regression techniques and present a comparative study to determine the best model for accurately predicting air quality with reference to data size and processing time. We have conducted experiments using Apache Spark and performed pollution estimation using multiple datasets. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) have been used as evaluation criteria for the comparison of these regression models. Furthermore, the processing time of each technique through standalone learning and through fitting the hyperparameter tuning on Apache Spark has also been calculated to find the best-fit model in terms of processing time and lowest error rate.INDEX TERMS IoT, smart city, air quality index (AQI), data mining, Apache Spark.
Internet of Things-enabled Intelligent Transportation Systems (ITS) are gaining significant attention in academic literature and industry, and are seen as a solution to enhancing road safety in smart cities. Due to the ever increasing number of vehicles, a significant rise in the number of road accidents has been observed. Vehicles embedded with a plethora of sensors enable us to not only monitor the current situation of the vehicle and its surroundings but also facilitates the detection of incidents. Significant research, for example, has been conducted on accident rescue, particularly on the use of Information and Communication Technologies (ICT) for efficient and prompt rescue operations. The majority of such works provide sophisticated solutions that focus on reducing response times. However, such solutions can be expensive and are not available in all types of vehicles. Given this, we present a novel Internet of Things-based accident detection and reporting system for a smart city environment. The proposed approach aims to take advantage of advanced specifications of smartphones to design and develop a low-cost solution for enhanced transportation systems that is deployable in legacy vehicles. In this context, a customized Android application is developed to gather information regarding speed, gravitational force, pressure, sound, and location. The speed is a factor that is used to help improve the identification of accidents. It arises because of clear differences in environmental conditions (e.g., noise, deceleration rate) that arise in low speed collisions, versus higher speed collisions). The information acquired is further processed to detect road incidents. Furthermore, a navigation system is also developed to report the incident to the nearest hospital. The proposed approach is validated through simulations and comparison with a real data set of road accidents acquired from Road Safety Open Repository, and shows promising results in terms of accuracy.
Fog computing has emerged as a revolutionary paradigm to serve the massive data generated in the Internet of Things (IoT) environments. It can be considered a derivative of cloud computing that provides cloud-like services at the edge of the network. As such, it helps address the, often significant, issue of delays encountered when using cloud systems for the IoT. According to the literature, inefficient scheduling of user tasks in fog computing can actually result in higher delays than cloud computing. Hence, the real benefits of fog computing can only be obtained by applying effective job scheduling strategies. In fact, task scheduling is an NP-hard problem and requires optimal and efficient techniques to address issues of latency, response time, and the efficient resource utilization of resources available at the edge of the network. Given this, we propose a novel bio-inspired hybrid algorithm (NBIHA) which is a hybrid of modified particle swarm optimization (MPSO) and modified cat swarm optimization (MCSO). In the proposed scheme, the MPSO is used to schedule the tasks among fog devices and the hybrid of the MPSO and MCSO is used to manage resources at the fog device level. In the proposed approach, the resources are assigned and managed on the basis of the demand of incoming requests. The main objective of the proposed work is to reduce the average response time and to optimize resource utilization by efficiently scheduling the tasks and managing the fog resources available. The simulations are performed using iFogSim. The evaluation results show that the proposed approach (NBIHA) shows promising results in terms of energy consumption, execution time, and average response time in comparison to the state-of-the-art scheduling techniques.INDEX TERMS Cloud computing, edge computing, fog computing, bio-inspired algorithms, task scheduling, resource management.
With the evolution of fog computing, processing takes place locally in a virtual platform rather than in a centralized cloud server. Fog computing combined with cloud computing is more efficient as fog computing alone does not serve the purpose. Inefficient resource management and load balancing leads to degradation in quality of service as well as energy losses. Traffic overhead is increased because all the requests are sent to the main server causing delays which cannot be tolerated in healthcare scenarios. To overcome this problem, the authors are consolidating fog computing resources so that requests are handled by foglets and only critical requests are sent to the cloud for processing. Servers are placed locally in each city to handle the nearby requests in order to utilize the resources efficiently along with load balancing among all the servers, which leads to reduced latency and traffic overhead with the improved quality of service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.