This research focuses on understanding biosorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. A new composite biosorbent has been prepared by coating chitosan onto acid treated oil palm shell charcoal (AOPSC). Chitosan loading on the AOPSC support is about 21% by weight. The shape of the adsorbent is nearly spherical with particle diameter ranging 100~150 µm. The adsorption capacity of the composite biosorbent was evaluated by measuring the extent of adsorption of chromium metal ions from water under equilibrium conditions at 25ºC. Using Langmuir isotherm model, the equilibrium data yielded the following ultimate capacity values for the coated biosorbent on a per gram basis of chitosan: 154 mg Cr/g. Bioconversion of Cr (VI) to Cr (III) by chitosan was also observed and had been shown previously in other studies using plant tissues and mineral surfaces. After the biosorbent was saturated with the metal ions, the adsorbent was regenerated with 0.1 M sodium hydroxide. Maximum desorption of the metal takes place within 5 bed volumes while complete desorption occurs within 10 bed volumes. Details of preparation of the biosorbent, characterization, and adsorption studies are presented. Dominant sorption mechanisms are ionic interactions and complexation.
The environmental impacts and high long-term costs of poor waste disposal have pushed the industry to realize the potential of turning this problem into an economic and sustainable initiative. Anaerobic digestion and the production of biogas can provide an efficient means of meeting several objectives concerning energy, environmental, and waste management policy. Biogas contains methane (60%) and carbon dioxide (40%) as its principal constituent. Excluding methane, other gasses contained in biogas are considered as contaminants. Removal of these impurities, especially carbon dioxide, will increase the biogas quality for further use. Integrating biological processes into the bio-refinery that effectively consume carbon dioxide will become increasingly important. Such process integration could significantly improve the sustainability of the overall bio-refinery process. The biogas upgrading by utilization of carbon dioxide rather than removal of it is a suitable strategy in this direction. The present work is a critical review that summarizes state-of-the-art technologies for biogas upgrading with particular attention to the emerging biological methanation processes. It also discusses the future perspectives for overcoming the challenges associated with upgradation. While biogas offers a good substitution for fossil fuels, it still not a perfect solution for global greenhouse gas emissions and further research still needs to be conducted.
Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v); resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.
The management of solid waste presents a challenge for developing countries as thegeneration of waste is increasing at a rapid and alarming rate. Much awareness towards thesustainability and technological advances for solid waste management has been implemented toreduce the generation of unnecessary waste. The recycling of this waste is being applied to producevaluable organic matter, which can be used as fertilizers or amendments to improve the soil structure.This review studies the sustainable transformation of various types of biomass waste such as animalmanure, sewage sludge, municipal solid waste, and food waste, into organic fertilizers and theirimpact on waste minimization and agricultural enhancement. The side effects of these organicfertilizers towards the soil are evaluated as the characteristics of these fertilizers will differ dependingon the types of waste used, in addition to the varying chemical composition of the organic fertilizers.This work will provide an insight to the potential management of biomass waste to be produced intoorganic fertilizer and the advantages of substituting chemical fertilizer with organic fertilizer derivedfrom the biomass waste.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.