In previous studies, researchers have determined the classification of fruit ripeness using the feature descriptor using color features (RGB, GSL, HSV, and L * a * b *). However, the performance from the experimental results obtained still yields results that are less than the maximum, viz the maximal accuracy is only 76%. Today, transfer learning techniques have been applied successfully in many real-world applications. For this reason, researchers propose transfer learning techniques using the VGG16 model. The proposed architecture uses VGG16 without the top layer. The top layer of the VGG16 replaced by adding a Multilayer Perceptron (MLP) block. The MLP block contains Flatten layer, a Dense layer, and Regularizes. The output of the MLP block uses the softmax activation function. There are three Regularizes that considered in the MLP block namely Dropout, Batch Normalization, and Regularizes kernels. The Regularizes selected are intended to reduce overfitting. The proposed architecture conducted on a fruit ripeness dataset that was created by researchers. Based on the experimental results found that the performance of the proposed architecture has better performance. Determination of the type of Regularizes is very influential on system performance. The best performance obtained on the MLP block that has Dropout 0.5 with increased accuracy reaching 18.42%. The Batch Normalization and the Regularizes kernels performance increased the accuracy amount of 10.52% and 2.63%, respectively. This study shows that the performance of deep learning using transfer learning always gets better performance than using machine learning with traditional feature extraction to determines fruit ripeness detection. This study gives also declaring that Dropout is the best technique to reduce overfitting in transfer learning.
Geoparser is a fundamental component of a Geographic Information Retrieval (GIR) geoparser, which performs toponym recognition, disambiguation, and geographic coordinate resolution from unstructured text domain. However, geoparsing of news articles which report several events across many place-mentions in the document are not yet adequately handled by regular geoparser, where the scope of resolution is either toponym-level or document-level. The capacity to detect multiple events and geolocate their true coordinates along with their numerical arguments is still missing from modern geoparsers, much less in Indonesian news corpora domain. We propose an event geoparser model with three stages of processing, which tightly integrates event extraction model into geoparsing and provides precise event-level resolution scope. The model casts the geotagging and event extraction as sequence labeling and uses LSTM-CRF inferencer equipped with features derived using Aggregated Topic Model from a large corpus to increase the generalizability. Throughout the proposed workflow and features, the geoparser is able to significantly improve the identification of pseudo-location entities, resulting in a 23.43% increase for weighted F1 score compared to baseline gazetteer and POS Tag features. As a side effect of event extraction, various numerical arguments are also extracted, and the output is easily projected to a rich choropleth map from a single news document.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.