This correspondence proposes a jointly-designed quasi-cyclic (QC) low-density parity-check (LDPC)-coded multi-relay cooperation with a destination node realized by multiple receive antennas. First, a deterministic approach is utilized to construct different classes of binary QC-LDPC codes with no length-4 cycles. Existing methods put some limitations in terms of code length and rate in order to provide high error-correction performance. Therefore, this article gives three classes of QC-LDPC codes based on a combinatoric design approach, known as cyclic difference packing (CDP), with flexibility in terms of code-length and rate selection. Second, the proposed CDP-based construction is utilized to jointly-design QC-LDPC codes for coded-relay cooperation. At the receiver, the destination node is realized by multiple receive antennas, where maximal-ratio combining (MRC) and sum-product algorithm (SPA)-based joint iterative decoding are utilized to decode the corrupted sequences coming from the source and relay nodes. Simulation results show that the proposed QC-LDPC coded-relay cooperations outperform their counterparts with a coding gain of about 0.25 dB at bit-error rate (BER) [Formula: see text] over a Rayleigh fading channel in the presence of additive white Gaussian noise. Furthermore, the extrinsic-information transfer (EXIT) chart analysis has been used to detect the convergence threshold of proposed jointly-designed QC-LDPC codes. Numerical analysis shows that the proposed jointly-designed QC-LDPC codes provide a better convergence as compared to their counterparts under the same conditions.
Abstract-Poor illumination, less background contrast and blurring effects makes the medical, satellite and camera images difficult to visualize. Image fusion plays the vital role to enhance image quality by resolving the above issues and reducing the image quantity. The combination of spatial and spectral technique Discrete Wavelet Transform and Principal Component Analysis (DWT-PCA) decrease processing time and reduce number of dimensions but down sampling causes lack of shift invariance that results in poor quality final fused image. At first this work uses combined median and average filter that eliminates noise in the image which is caused by illumination, camera circuitry and sensor at preprocessing stage. Then, hybrid Stationary Wavelet Transform and Principal Component Analysis (SWT-PCA) technique is implemented to increase output image accuracy by eliminating down sampling and is not influenced by artifacts and blurring effects. Further, it can overcome the trade-off of Heisenberg's uncertainty principle by improving accuracy in both domains, time (spatial) as well as frequency (spectral). The proposed combined median and average filter with hybrid SWT-PCA algorithm measures quality parameters, such as peak signal to noise ratio (PSNR), mean squared error (MSE) and normalized cross correlation (NCC) and improved results depict the superiority of the algorithm than existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.