A compact tree shape planar quad element Multiple Input Multiple Output (MIMO) antenna bearing a wide bandwidth for 5G communication operating in the millimeter-wave spectrum is proposed. The radiating element of the proposed design contains four different arcs to achieve the wide bandwidth response. Each radiating element is backed by a 1.57 mm thicker Rogers-5880 substrate material, having a loss tangent and relative dielectric constant of 0.0009 and 2.2, respectively. The measured impedance bandwidth of the proposed quad element MIMO antenna system based on 10 dB criterion is from 23 GHz to 40 GHz with a port isolation of greater than 20 dB. The measured radiation patterns are presented at 28 GHz, 33 GHz and 38 GHz with a maximum total gain of 10.58, 8.87 and 11.45 dB, respectively. The high gain of the proposed antenna further helps to overcome the atmospheric attenuations faced by the higher frequencies. In addition, the measured total efficiency of the proposed MIMO antenna is observed above 70% for the millimeter wave frequencies. Furthermore, the MIMO key performance metrics such as Mean Effective Gain (MEG) and Envelope Correlation Coefficient (ECC) are analyzed and found to conform to the required standard of MEG < 3 dB and ECC < 0.5. A prototype of the proposed quad element MIMO antenna system is fabricated and measured. The experimental results validate the simulation design process conducted with Computer Simulation Technology (CST) software.
COVID-19 syndrome has extensively escalated worldwide with the induction of the year 2020 and has resulted in the illness of millions of people. COVID-19 patients bear an elevated risk once the symptoms deteriorate. Hence, early recognition of diseased patients can facilitate early intervention and avoid disease succession. This article intends to develop a hybrid deep neural networks (HDNNs), using computed tomography (CT) and X-ray imaging, to predict the risk of the onset of disease in patients suffering from COVID-19. To be precise, the subjects were classified into 3 categories namely normal, Pneumonia, and COVID-19. Initially, the CT and chest X-ray images, denoted as ‘hybrid images’ (with resolution 1080 × 1080) were collected from different sources, including GitHub, COVID-19 radiography database, Kaggle, COVID-19 image data collection, and Actual Med COVID-19 Chest X-ray Dataset, which are open source and publicly available data repositories. The 80% hybrid images were used to train the hybrid deep neural network model and the remaining 20% were used for the testing purpose. The capability and prediction accuracy of the HDNNs were calculated using the confusion matrix. The hybrid deep neural network showed a 99% classification accuracy on the test set data.
The Coronavirus disease 2019 (COVID-19) is an infectious disease spreading rapidly and uncontrollably throughout the world. The critical challenge is the rapid detection of Coronavirus infected people. The available techniques being utilized are body-temperature measurement, along with anterior nasal swab analysis. However, taking nasal swabs and lab testing are complex, intrusive, and require many resources. Furthermore, the lack of test kits to meet the exceeding cases is also a major limitation. The current challenge is to develop some technology to non-intrusively detect the suspected Coronavirus patients through Artificial Intelligence (AI) techniques such as deep learning (DL). Another challenge to conduct the research on this area is the difficulty of obtaining the dataset due to a limited number of patients giving their consent to participate in the research study. Looking at the efficacy of AI in healthcare systems, it is a great challenge for the researchers to develop an AI algorithm that can help health professionals and government officials automatically identify and isolate people with Coronavirus symptoms. Hence, this paper proposes a novel method CoVIRNet (COVID Inception-ResNet model), which utilizes the chest X-rays to diagnose the COVID-19 patients automatically. The proposed algorithm has different inception residual blocks that cater to information by using different depths feature maps at different scales, with the various layers. The features are concatenated at each proposed classification block, using the average-pooling layer, and concatenated features are passed to the fully connected layer. The efficient proposed deep-learning blocks used different regularization techniques to minimize the overfitting due to the small COVID-19 dataset. The multiscale features are extracted at different levels of the proposed deep-learning model and then embedded into various machine-learning models to validate the combination of deep-learning and machine-learning models. The proposed CoVIR-Net model achieved 95.7% accuracy, and the CoVIR-Net feature extractor with random-forest classifier produced 97.29% accuracy, which is the highest, as compared to existing state-of-the-art deep-learning methods. The proposed model would be an automatic solution for the assessment and classification of COVID-19. We predict that the proposed method will demonstrate an outstanding performance as compared to the state-of-the-art techniques being used currently.
Physical activity is essential for physical and mental health, and its absence is highly associated with severe health conditions and disorders. Therefore, tracking activities of daily living can help promote quality of life. Wearable sensors in this regard can provide a reliable and economical means of tracking such activities, and such sensors are readily available in smartphones and watches. This study is the first of its kind to develop a wearable sensor-based physical activity classification system using a special class of supervised machine learning approaches called boosting algorithms. The study presents the performance analysis of several boosting algorithms (extreme gradient boosting—XGB, light gradient boosting machine—LGBM, gradient boosting—GB, cat boosting—CB and AdaBoost) in a fair and unbiased performance way using uniform dataset, feature set, feature selection method, performance metric and cross-validation techniques. The study utilizes the Smartphone-based dataset of thirty individuals. The results showed that the proposed method could accurately classify the activities of daily living with very high performance (above 90%). These findings suggest the strength of the proposed system in classifying activity of daily living using only the smartphone sensor’s data and can assist in reducing the physical inactivity patterns to promote a healthier lifestyle and wellbeing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.