There is a constant search for novel methods of classication and predicting cardiac rhythm disorders or arrhythmias. We prefer to classify them as wide complex tachyarrhythmia's or ventricular arrhythmias inclusive of malignant ventricular arrhythmias which with hemodynamic compromise is usually life threatening. Long term and fatality predictions warranting AICD implantation are already available. We have a novel method and robust algorithm with preprocessing and optimal feature selection from ECG signal analysis for such rhythm disorders. Variability of ECG recording makes predictability analysis challenging especially when execution time is of prime importance in tackling resuscitative attempts for MVA. Noisy data needs ltering and preprocessing for effective analysis. Portable devices need more of this ltering prior to data input. Deterministic probabilistic nite state automata (DPFA) which generates a probability strings from the broad morphologic patterns of an ECG can generate a classier data for the algorithm without preprocessing for atrial high rate episodes (AHRE). DPFA can be effectively used for atrial tachyarrhythmias for predictive analysis. The method we suggest is use of optimal classier set for prediction of malignant ventricular arrhythmias and use of DFPA for atrial arrhythmias. Here traditional practices of heart rate variability based support vector machine (SVM), discrete wavelet transform (DWT), principal component analysis (PCA), deep neural network (DNN), convoutional neural network (CNN) or CNN with long term memory (LSTM) can be outperformed. AICD - automatic implantable cardiac debrillator, MVA - Malignant Ventricular Arrhythmias, VT - ventricular tachycardia, VF - ventricular brillation,DFPA deterministic probabilistic nite state automata, SVM -Support Vector Machine, DWT discrete wavelet transform, PCA principal component analysis, DNN deep neural network, CNN convoutional neural network, Convoutional LSTM Long short term memory,RNN recurrent neural network
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.