In experimental animals, stress and catecholamines stimulate endogenous interleukin-6 (IL-6) secretion, whereas glucocorticoids inhibit it. To examine whether physical stress alters the secretion of IL-6 in humans, and to what extent this is correlated with catecholamines and modified by glucocorticoids, we performed high-intensity treadmill exercise test runs on 15 male volunteers, in a double-blind crossover design, after pretreatment with placebo, hydrocortisone, or dexamethasone. Plasma epinephrine and norepinephrine concentrations peaked 15 min after the start of exercise, whereas plasma IL-6 concentrations peaked twice, 15 min and 45 min after the onset of the test run. There was no difference in either the epinephrine or norepinephrine peaks among the three treatments, but the net area under the curve for IL-6 was smaller after hydrocortisone or dexamethasone than after placebo and smaller after dexamethasone than after hydrocortisone. A positive correlation was observed between peak plasma epinephrine or norepinephrine and IL-6 levels at 15 min. These findings suggest that IL-6 secretion is stimulated during exercise, possibly by catecholamines, whereas exogenous glucocorticoids attenuate this effect without affecting the catecholamine levels.
Two studies, each utilizing short-term treadmill exercise of a different intensity, assessed the metabolic and hormonal responses of women to exercise in the morning (AM) and late afternoon (PM). In study 1, plasma concentrations of growth hormone, arginine vasopressin, catecholamines, adrenocorticotropic hormone, cortisol, lactate, and glucose were measured before, during, and after high-intensity exercise (90% maximal O2 uptake) in the AM and PM. In study 2, plasma concentrations of adrenocorticotropic hormone, cortisol, lactate, and glucose were measured before, during, and after moderate-intensity exercise (70% maximal O2 uptake) in the AM and PM in the follicular (days 3-9), midcycle (days 10-16), and luteal (days 18-26) phases of the menstrual cycle. The results of studies 1 and 2 revealed no significant diurnal differences in the magnitude of responses for any measured variable. In addition, study 2 revealed a significant time-by-phase interaction for glucose (P = 0. 014). However, net integrated responses were similar across cycle phases. These data suggest that metabolic and hormonal responses to short-term, high-intensity exercise can be assessed with equal reliability in the AM and PM and that there are subtle differences in blood glucose responses to moderate-intensity exercise across menstrual cycle phase.
Background
Mutations in the ryanodine receptor type 1 gene (RYR1) that encodes the skeletal muscle-specific intracellular calcium (Ca2+) release channel are a cause of malignant hyperthermia (MH). In this study we examined RYR1 mutations in a large number of North American MH-susceptible (MHS) subjects without prior genetic diagnosis.
Methods
RYR1 was examined in 120 unrelated MHS subjects from the United States in a tiered manner. The alpha-1 subunit of the dihydropyridine receptor gene (CACNA1S) was screened for four variants in subjects in whom no abnormality was found in 100 or more exons of RYR1.
Results
Ten known causative MH mutations were found in 26 subjects. Variants of uncertain significance in RYR1 were found in 36 subjects, 16 of which are novel. Novel variants in both RYR1 and CACNA1S were found in the one subject who died of MH. Two RYR1 variants were found in 4 subjects. Variants of uncertain significance were found outside and inside the hotspots of RYR1. Maximal contractures in the caffeine-halothane contracture test were greater in those who had a known MH mutation or variant of uncertain significance in RYR1 than in those who did not.
Conclusions
The identification of novel RYR1 variants and previously observed RYR1 variants of uncertain significance in independent MHS families is necessary for demonstrating the significance of these variants for MH susceptibility and supports the need for functional studies of these variants. Continued reporting of the clinical phenotypes of MH is necessary for interpretation of genetic findings, especially because the pathogenicity of most of these genetic variants associated with MHS remains to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.