To improve the accuracy and efficiency of ships’ ballast water detection, the separation of microalgae according to size is significant. In this article, a method to separate microalgae based on inertia‐enhanced pinched flow fractionation (iPFF) was reported. The method utilized the inertial lift force induced by flow to separate microalgae according to size continuously. The experimental results show that, as the Reynolds number increases, the separation effect becomes better at first, but then stays unchanged. The best separation effect can be obtained when the Reynolds number is 12.3. In addition, with the increase of the flow rate ratio between sheath fluid and microalgae mixture, the separation effect becomes better and the best separation effect can be obtained when the flow rate ratio reaches 10. In this case, the recovery rate of Tetraselmis sp. is about 90%, and the purity is about 86%; the recovery rate of Chlorella sp. is as high as 99%, and the purity is about 99%. After that, the separation effect keeps getting better but very slowly. In general, this study provides a simple method for the separation of microalgae with different sizes, and lays a foundation for the accurate detection of microalgae in the ballast water.
The inductive detection of wear debris in lubrication oil is an effective method to monitor the machine status. As the wear debris is usually micro scale, a micro inductive sensor is always used to detect them in research papers or high-tech products. However, the improvement of detection sensitivity for micro inductive sensors is still a great challenge, especially for early wear debris of 20 μm or smaller diameter. This paper proposes a novel method to improve the detection sensitivity of a micro inductive sensor. Regarding the magnetic powder surrounding the sensor, the magnetic field in the core of the sensor where the wear debris pass through would be enhanced due to the increased relative permeability. Thus, the inductive signal would be improved and the detection sensitivity would be increased. It is found that the inductive signal would linearly increase with increasing the concentration of the magnetic powder and this enhancement would also be effective for wear debris of different sizes. In addition, the detection limit of the micro inductive sensor used in our experiment could be extended to 11 μm wear debris by the proposed method.
Wear debris detection is an effective method to determine the running state of the machine. Recently, the planar inductor is commonly used to detect wear debris. The previous studies have found that the inductive signal would be varied while changing the position of wear debris pass through. However, the effect of position on the wear debris detection is not well understood. In this paper, a novel detection system in which the position of wear debris pass through could be adjusted precisely is designed. By changing the position in horizontal or vertical direction, the inductive signals of the wear debris were acquired. In the horizontal direction, the experimental results show that the amplitude of the inductive signal first increases and then decreases when the position changes from the center of the planar inductor to the outer. The maximum inductive signal appears when the wear debris pass through the edge of the inner coil, which is 20% higher than that for the center and much higher than that for the edge of outer coil. In the vertical direction, the signal decreases almost linearly when the position is away from the planar inductor. For every 0.1 mm step far away the planar inductor, the signal amplitude drops by approximately 10%. The variation trend of our experimental results is consistent with the numerical simulation results of magnetic intensity around the planar inductor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.