In this work, a novel deep learning technique for the recognition of handwritten Bangla isolated compound character is presented and a new benchmark of recognition accuracy on the CMATERdb 3.1.3.3 dataset is reported. Greedy layer wise training of Deep Neural Network has helped to make significant strides in various pattern recognition problems. We employ layerwise training to Deep Convolutional Neural Networks (DCNN) in a supervised fashion and augment the training process with the RMSProp algorithm to achieve faster convergence. We compare results with those obtained from standard shallow learning methods with predefined features, as well as standard DCNNs. Supervised layerwise trained DCNNs are found to outperform standard shallow learning models such as Support Vector Machines as well as regular DCNNs of similar architecture by achieving error rate of 9.67% thereby setting a new benchmark on the CMATERdb 3.1.3.3 with recognition accuracy of 90.33%, representing an improvement of nearly 10%.
We consider the problem of incorporating end-user advice into reinforcement learning (RL). In our setting, the learner alternates between practicing, where learning is based on actual world experience, and end-user critique sessions where advice is gathered. During each critique session the end-user is allowed to analyze a trajectory of the current policy and then label an arbitrary subset of the available actions as good or bad. Our main contribution is an approach for integrating all of the information gathered during practice and critiques in order to effectively optimize a parametric policy. The approach optimizes a loss function that linearly combines losses measured against the world experience and the critique data. We evaluate our approach using a prototype system for teaching tactical battle behavior in a real-time strategy game engine. Results are given for a significant evaluation involving ten end-users showing the promise of this approach and also highlighting challenges involved in inserting end-users into the RL loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.