<p style='text-indent:20px;'>The purpose of this paper is threefold. Firstly, we establish a Gagliardo-Nirenberg inequality with optimal constant, which involves a fractional norm and an inhomogeneous nonlinearity. Secondly, as an application of this inequality, we study ground state standing waves to a nonlinear Schrödinger equation (NLS) with a mixed fractional Laplacians and a inhomogeneous nonlinearity, and consider a minimization problem which gives the existence of ground state solutions with prescribed mass. In particular, by making use of this Gagliardo-Nirenberg inequality and its optimal constant, we give a sufficient and necessary condition for the existence results. Finally, we develop local wellposedness theory for NLS with a mixed fractional Laplacians and a inhomogeneous nonlinearity. In the process, we prove Strichartz estimates in Lorentz spaces which may be of independent interest.</p>
We consider the Benjamin–Bona–Mahony (BBM) equation of the form ut+ux+uux−uxxt=0,(x,t)∈M×R where M=T or R. We establish norm inflation (NI) with infinite loss of regularity at general initial data in Fourier amalgam and Wiener amalgam spaces with negative regularity. This strengthens several known NI results at zero initial data in Hs(T) established by Bona–Dai (2017) and the ill-posedness result established by Bona–Tzvetkov (2008) and Panthee (2011) in Hs(R). Our result is sharp with respect to the local well-posedness result of Banquet–Villamizar–Roa (2021) in modulation spaces Ms2,1(R) for s≥0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.