Low‐energy spectra of single‐molecule magnets (SMMs) are often described by Heisenberg Hamiltonians. Within this formalism, exchange interactions between magnetic centers determine the ground‐state multiplicity and energy separation between the ground and excited states. In this contribution, we extract exchange coupling constants (J) for a set of iron (III) binuclear and tetranuclear complexes from all‐electron calculations using non‐collinear spin‐flip time‐dependent density functional theory (NC‐SF‐TDDFT). For 12 binuclear complexes with J‐values ranging from −6 to −132 cm−1, our benchmark calculations using the short‐range hybrid ωPBEh functional and 6‐31G(d,p) basis set agree well with the experimentally derived values (mean absolute error of 4.7 cm−1). For the tetranuclear SMMs, the computed J constants are within 6 cm−1 from the experimentally derived values. We explore the range of applicability of the Heisenberg model by analyzing bonding patterns in these Fe(III) complexes using natural orbitals (NO), their occupations, and the number of effectively unpaired electrons. The results illustrate the efficiency of the spin‐flip protocol for computing the exchange couplings and the utility of the NO analysis in assessing the validity of effective spin Hamiltonians.
We present a new implementation for computing spin-orbit couplings (SOCs) within time-dependent density-functional theory (TD-DFT) framework in the standard spin-conserving formulation as well in the spin-flip variant (SF-TD-DFT). This approach employs the Breit-Pauli Hamiltonian and Wigner-Eckart's theorem applied to the reduced one-particle transition density matrices, together with the spin-orbit mean-field (SOMF) treatment of the two-electron contributions. We use state-interaction procedure and compute the SOC matrix elements using zero-order non-relativistic states. Benchmark calculations using several closed-shell organic molecules, diradicals, and a single-molecule magnet (SMM) illustrate the efficiency of the SOC protocol. The results for organic molecules (described by standard TD-DFT) show that SOCs are insensitive to the choice of the functional or basis sets, as long as the states of the same characters are compared. In contrast, the SF-TD-DFT results for small diradicals (CH2, NH2+ ,SiH2, and PH2+ ) show strong functional dependence. The spin-reversal energy barrier in a Fe(III) SMM computed using non-collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental estimate.
The robustness of nickelocene's (NiCp 2 , Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp 2 is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp 2 using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp 2 originates from a large spin−orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp 2 derivatives and a model system of the NiCp 2 /MgO(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp 2 coordination environment and upon its adsorption on a surface. Such resilience of the NiCp 2 magnetic behavior supports using NiCp 2 as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope.
Stabilization of a G-quadruplex (G4) DNA structure in the proto-oncogene c-MYC using small molecule ligands has emerged as an attractive strategy for the development of anticancer therapeutics. To understand the subtle structural changes in the G4 structure upon ligand binding, molecular dynamics (MD) simulations of c-MYC G4 DNA were carried out in a complex with six different potent ligands: 3AQN, 6AQN, 3APN, 360A, Nap-Et, and Nap-Pr. The results show that the ligands 3AQN, 6AQN, 3APN, and 360A stabilize the G4 structure by making stacking interactions with the top quartet. On the other hand, Nap-Et and Nap-Pr bind at the groove of the G4 structure. These groove binding ligands make crucial H-bond contacts with the guanines and electrostatic interactions with the phosphate backbone. Two-dimensional dynamic correlation maps unraveled the ligand-induced correlated motions between the guanines in the quartet and a di-nucleotide present in the propeller loop-2 of the G4 structure. Cluster analysis and ONIOM calculations revealed the structural dynamics in the loop of the quadruplex upon ligand binding. Overall, the results from the present study suggest that engineering specific contacts with the propeller loop can be an efficient way to design c-MYC G4-specific ligands.
Robustness of nickelocene’s (NiCp<sup>2</sup>, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp<sup>2</sup> is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp<sup>2</sup> using the equation-of-motion coupled-cluster (EOM-CC) framework. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp<sup>2</sup> originates from a large spin-orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp<sup>2</sup> derivatives and a model system of the NiCp<sup>2</sup>/MgO(001) adsorption complex. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp<sup>2</sup> coordination environment and upon its adsorption on a surface. Such resilience of the NiCp<sup>2</sup> magnetic behavior supports using NiCp<sup>2</sup> as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.