Levosimendan is a new calcium sensitizer developed for the short-term intravenous treatment of congestive heart failure. The aims of the present open-label, nonrandomized study were to determine the tolerability, hemodynamic effects, and the basic pharmacokinetics of levosimendan and its metabolites during an extended continuous infusion of levosimendan. Twenty-four patients with New York Heart Association (NYHA) III-IV heart failure in two groups of 12 patients were exposed to either 0.05 microg/kg/min or 0.1 microg/kg/min of levosimendan for 7 days. Heart rate and blood pressure were measured, and blood samples for the determination of plasma concentrations of the parent drug and its metabolites were drawn daily during the infusion and the 10 to 15 days' follow-up. The 7-day infusion was well tolerated and no premature discontinuations occurred. Both systolic and diastolic blood pressure decreased maximally by 6 mmHg in the lower and by 11 mmHg in the higher levosimendan dose groups during the infusion period (p < 0.05 for both groups). The mean heart rate values increased maximally by 18 and 26 beats/min in the lower and higher levosimendan dose groups, respectively (p < 0.001 for both groups). The hemodynamic effects peaked at the end of the infusion period and thereafter slowly declined during the follow-up. After the recommended infusion period of 24 hours, the mean heart rate increase was only 2 and 6 beats/min in the lower and higher levosimendan dose groups, respectively. The elimination half-life of levosimendan was approximately 1 hour and of the metabolites 70 to 80 hours. It can be concluded that levosimendan, even administered considerably longer than the recommended 24 hours, was well tolerated. The 7-day infusion induced a prolonged increase in heart rate and a minor decrease in blood pressure. The long-lasting effects are probably explained by the active metabolite.
Levosimendan has been developed for the treatment of decompensated heart failure and is used intravenously when patients with heart failure require immediate initiation of drug therapy. It increases cardiac contractility and induces vasodilatation. The pharmacokinetics of levosimendan are linear at the therapeutic dose range of 0.05-0.2 microg/kg/minute. The short half-life (about 1 hour) of the parent drug, levosimendan, enables fast onset of drug action, although the effects are long-lasting due to the active metabolite OR-1896, which has an elimination half-life of 70-80 hours in patients with heart failure (New York Heart Association functional class III-IV). Although levosimendan is administered intravenously, it is excreted into the small intestine and reduced by intestinal bacteria to an amino phenolpyridazinone metabolite (OR-1855). This metabolite is further metabolised by acetylation to N-acetylated conjugate (OR-1896). The circulating metabolites OR-1855 and OR-1896 are formed slowly, and their maximum concentrations are seen on average 2 days after stopping a 24-hour infusion. The haemodynamic effects after levosimendan seem to be similar between fast and slow acetylators despite the fact that the enzyme N-acetyltransferase-2, which is responsible for the metabolism of OR-1855 to OR-1896, is polymorphically distributed in the population. Levosimendan reduces peripheral vascular resistance and has direct contractility-enhancing effects on the failing left ventricle. It also improves indices of diastolic function and seems to improve the function of stunned myocardium. Despite an improvement in ventricular function, levosimendan does not increase myocardial oxygen uptake significantly. An increase in coronary blood flow and a reduction in coronary vascular resistance have been observed. Levosimendan reduces plasma brain natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP) levels substantially, and a decrease in plasma endothelin-1 has been observed. Levosimendan also exerts beneficial effects on proinflammatory cytokines and apoptosis mediators. The effects of a 24-hour levosimendan infusion on filling pressure, ventricular function and BNP, as well as NT-proBNP, last for at least 7 days.
Positive inotropic drugs have various mechanisms of action. Long-term use of cyclic adenosine monophosphate (cAMP)-dependent drugs has adverse effects on the prognosis of heart failure patients, whereas digoxin has neutral effect on mortality. There are, however, little data on the effects of intravenous inotropic drugs on the outcome of patients. Intravenous inotropic agents are used to treat cardiac emergencies and refractory heart failure. beta-Adrenergic agonists are rapid acting and easy to titrate, with short elimination half-life. However, they increase myocardial oxygen consumption and are thus hazardous during myocardial ischaemia. Furthermore they may promote myocyte apoptosis. Phosphodiesterase (PDE) III inhibiting drugs (amrinone, milrinone and enoximone) increase contractility by reducing the degradation of cAMP. In addition, they reduce both preload and afterload via vasodilation. Short-term use of intravenous milrinone is not associated with increased mortality, and some symptomatic benefit may be obtained when it is used in refractory heart failure. Furthermore, PDE III inhibitors facilitate weaning from the cardiopulmonary bypass machine after cardiac surgery. Levosimendan belongs to a new group of positive inotropic drugs, the calcium sensitisers. It has complex pharmacokinetics and long-lasting haemodynamic effects as a result of its active metabolites. In comparative trials, it has been better tolerated than the most widely used beta-agonist inotropic drug, dobutamine. The pharmacokinetics of the intravenous inotropic drugs might sometimes greatly modify and prolong the response to the therapy, for example because of long-acting active metabolites. These drugs display considerable differences in their pharmacokinetics and pharmacodynamics, and the selection of the most appropriate inotropic drug for each patient should be based on careful consideration of the clinical status of the patient and on the pharmacology of the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.