The transcription factor C/EBPalpha (for CCAAT/enhancer binding protein-alpha; encoded by the gene CEBPA) is crucial for the differentiation of granulocytes. Conditional expression of C/EBPalpha triggers neutrophilic differentiation, and no mature granulocytes are observed in Cebpa-mutant mice. Here we identify heterozygous mutations in CEBPA in ten patients with acute myeloid leukemia (AML). We found that five mutations in the amino terminus truncate the full-length protein, but did not affect a 30-kD protein initiated further downstream. The mutant proteins block wild-type C/EBPalpha DNA binding and transactivation of granulocyte target genes in a dominant-negative manner, and fails to induce granulocytic differentiation. Ours is the first report of CEBPA mutations in human neoplasia, and such mutations are likely to induce the differentiation block found in AML.
Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initial studies examining T84 colonic epithelial cells revealed that barrier function is uniquely resistant to changes elicited by hypoxia. A search for intestinal-specific, barrier-protective factors revealed that the human intestinal trefoil factor (ITF) gene promoter bears a previously unappreciated binding site for hypoxia-inducible factor (HIF)-1. Hypoxia resulted in parallel induction of ITF mRNA and protein. Electrophoretic mobility shift assay analysis using ITF-specific, HIF-1 consensus motifs resulted in a hypoxia-inducible DNA binding activity, and loading cells with antisense oligonucleotides directed against the α chain of HIF-1 resulted in a loss of ITF hypoxia inducibility. Moreover, addition of anti-ITF antibody resulted in a loss of barrier function in epithelial cells exposed to hypoxia, and the addition of recombinant human ITF to vascular endothelial cells partially protected endothelial cells from hypoxia-elicited barrier disruption. Extensions of these studies in vivo revealed prominent hypoxia-elicited increases in intestinal permeability in ITF null mice. HIF-1–dependent induction of ITF may provide an adaptive link for maintenance of barrier function during hypoxia.
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone-binding proteins that regulate transcriptional responses to peroxisome proliferators and structurally diverse fatty acids. PPARs have been implicated in a wide variety of functions, including lipid homeostasis and inflammatory responses. In this study, we examined the expression of PPAR-α in response to ambient hypoxia. Initial studies using microarray analysis of intestinal epithelial mRNA revealed that hypoxia rapidly down-regulates PPAR-α mRNA and protein in epithelial cells in vitro and in vivo. Subsequent studies revealed that the PPAR-α gene bears a DNA consensus motif for the transcription factor hypoxia-inducible factor 1 (HIF-1). EMSA analysis revealed that ambient hypoxia induces HIF-1α binding to the HIF-1 consensus domain of PPAR-α in parallel to HIF-1 nuclear accumulation, and antisense depletion of HIF-1α resulted in a loss of PPAR-α down-regulation. The PPAR-α ligand pirinixic acid (WY14643) functionally promoted IFN-γ-induced ICAM-1 expression in normoxic epithelia, and this response was lost in cells pre-exposed to ambient hypoxia. Such results indicate that HIF-1-dependent down-regulation of PPAR-α may provide an adaptive response to proinflammatory stimuli during cellular hypoxia. These studies provide unique insight into the regulation of PPAR-α expression and, importantly, provide an example of a down-regulatory pathway mediated by HIF-1.
During episodes of inflammation, multiple cell types release adenine nucleotides in the form of ATP, ADP, 5′-AMP, and adenosine. In particular, following activation, polymorphonuclear leukocytes release larger quantities of 5′-AMP. Extracellular 5′-AMP is metabolized to adenosine by surface-expressed 5′-ectonucleotidase (CD73). Adenosine liberated by this process activates surface adenosine A2B receptors, results in endothelial junctional reorganization, and promotes barrier function. We hypothesized that adenosine signaling to endothelia provides a paracrine loop for regulated expression of CD73 and enhanced endothelial barrier function. Using an in vitro microvascular endothelial model, we investigated the influence of 5′-AMP; adenosine; and adenosine analogues on CD73 transcription, surface expression, and function. Initial experiments revealed that adenosine and adenosine analogues induce CD73 mRNA (RT-PCR), surface expression (immunoprecipitation of surface biotinylated CD73), and function (HPLC analysis of etheno-AMP conversion to ethenoadenosine) in a time- and concentration-dependent fashion. Subsequent studies revealed that similar exposure conditions increase surface protein through transcriptional induction of CD73. Analysis of DNA-binding activity by EMSA identified a functional role for CD73 cAMP response element and, moreover, indicated that multiple cAMP agonists induce transcriptional activation of functional CD73. Induced CD73 functioned to enhance 5′-AMP-mediated promotion of endothelial barrier (measured as a paracellular flux of 70-kDa FITC-labeled tracer). These results provide an example of transcriptional induction of enzyme (CD73) by enzymatic product (adenosine) and define a paracrine pathway for the regulated expression of vascular endothelial CD73 and barrier function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.