Abiotic stresses can directly or indirectly affect the physiological status of an organism by altering its metabolism, growth, and development. The leaf growth and Chlorophyll content has significantly shown to vary from the control ones while the grain yield was not affected. While many plant species naturally accumulate proline and protein as major organic osmolytes when subjected to different abiotic stresses. These compounds are thought to play adaptive roles in mediating osmotic adjustment and protecting sub cellular structures in stressed plants. Different approaches have been contemplated to increase the concentrations of proline like compounds in plants grown under stress conditions to increase their stress tolerance. Seven different traditional rice varieties of Assam were evaluated for their response to osmolyte production under physiological drought condition through simulation at three levels of osmotic stress of 0.15 bar, 0.25 bar and 0.56 bar of physiological drought initiated by polyethylene glycol (PEG 6000). Along with the evaluation for osmolyte response the different components of genotypic variation for six different drought-sustaining characters in the seven rice varieties were also substantiated. The results indicated that plant height and seed number have significant genotypic coefficient of variability (GCV) and heritability. Verities like Laodubi, Leserihali, Beriabhanga and Borah were screened out as the best drought sustaining variety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.