Objective: The aim of this study was to formulate the solid self-micro emulsifying dispersible tablets for promoting the dissolution of Piroxicam.
Methods: Solubility study test was performed to know the solubility of various oil phase, surfactants, cosurfactants. Self-emulsifying grading test was done by visual grading system. Ternary phase diagrams and droplet size analysis test were performed to screen and optimize the Piroxicam-self microemulsifying drug delivery system (SMEDS). Then microcrystalline cellulose (KG802) was added as a suitable adsorbent and dispersible tablet were prepared by wet granulation compression method.
Results: The final composition of Piroxicam-SMEDS was oil phase (oleic acid, 23%), surfactant (Cremophor R H-40,61%), co-surfactant (PEG-400,16%) based on the result of solubility test, self-emulsifying grading test, droplet size analysis and ternary phase diagrams. Microcrystalline cellulose (KG802) was selected based on dissolution study (98.35%) and added to liquid Piroxicam-Smeds formulation to form dispersible tablets. The in vitro dissolution study showed 98.02 % of drug release from Piroxicam-SMEDS tablets.
Conclusion: Piroxicam–Self microemulsifying dispersible tablets have increased the solubility and bioavailability of the Piroxicam to a greater extent. SMEDS formulation can help the solubility of poorly water-soluble drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.