Multi-target tracking (MTT) generally requires either a network of Doppler radar receivers distributed at different locations or a phased array radar. The targets moving with small/no radial velocity or angular velocity only cannot be detected and localized completely by deploying Doppler radar without antenna arrays or multiple receivers. To resolve this issue, we present a new MTT algorithm based on 2-D velocity measurements, namely, radial and angular velocities, using dual-frequency interferometric radar. The contributions of the proposed research are twofold: First, we introduce the mathematical model and implementation of the proposed algorithm by explicitly establishing the relationship between 2-D velocity measurements and kinematic state of the target in terms of Cartesian coordinates. Based on 2-D velocity measurement function, the proposed MTT algorithm comprises the following steps: (i) data association using global nearest neighbor (GNN) method (ii) target state estimation using interacting multiple model (IMM) estimator combined with square-root cubature Kalman filter (SCKF) (iii) track management using rule-based M/N logic. Second, performance of the proposed algorithm is evaluated in terms of tracking accuracy, computational complexity and IMM mean model probabilities. Simulation results for different scenarios with multiple targets moving in different tracks have been presented to verify the effectiveness of the proposed algorithm.
There is widespread agreement that improved health should be regarded as a means and an end in the context of the development process. The health of the populace and the equitable provision of healthcare are two indicators of a society’s level of development. A variety of factors influences child mortality. This study investigated the causes of child death and the interaction effect of birth spacing (B.S.) and maternal health care services (MHCS) on child mortality. Using SPSS version 20, we used the Pakistan Demographic and Health Survey (PDHS) 2017–2018 data set to investigate the associated factors of child mortality and the moderating influence of birth spacing using binary logistic regression. The outcome variable is categorical with two categories. The findings indicated that the risk of infant death decreased with adequate B.S. between two pregnancies and access to maternal health care services. Birth spacing was found to moderate the link between access to maternal health care services (MHCS) and child mortality. Our research leads us to conclude that the amount of time between children’s births significantly reduces infant mortality. When the birth spacing is at least 33 months, the relationship between maternal health care services and child mortality becomes more evident and negative.
Micro-Doppler signatures obtained from the Doppler radar are generally used for human activity classification. However, if the angle between the direction of motion and radar antenna broadside is greater than 60°, the micro-Doppler signatures generated by the radial motion of human body reduce significantly, thereby degrading the performance of the classification algorithm. For the accurate classification of different human activities irrespective of trajectory, we propose a new algorithm based on dual micro-motion signatures, namely, the micro-Doppler and interferometric micro-motion signatures, using an interferometric radar. First, the motion of different parts of the human body is simulated using motion capture (MOCAP) data, which is further utilized for radar echo signal generation. Second, time-varying Doppler and interferometric spectrograms obtained from time-frequency analysis of a single Doppler receiver and interferometric output data, respectively, are fed as input to the deep convolutional neural network (DCNN) for feature extraction and the training/testing process. The performance of the proposed algorithm is analyzed and compared with a micro-Doppler signatures-based classifier. Results show that a dual micro-motion-based DCNN classifier using an interferometric radar is capable of classifying different human activities with an accuracy level of 98%, where Doppler signatures diminish considerably, providing insufficient information for classification. Verification of the proposed classification algorithm based on dual micro-motion signatures is also performed using a real radar test dataset of different human walking patterns, and a classification accuracy level of approximately 90% is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.