Marine natural products have as of now been acknowledged as the most important source of bioactive substances and drug leads. Marine flora and fauna, such as algae, bacteria, sponges, fungi, seaweeds, corals, diatoms, ascidian etc. are important resources from oceans, accounting for more than 90% of the total oceanic biomass. They are taxonomically different with huge productive and are pharmacologically active novel chemical signatures and bid a tremendous opportunity for discovery of new anti-cancer molecules. The water bodies a rich source of potent molecules which improve existence suitability and serve as chemical shield against microbes and little or huge creatures. These molecules have exhibited a range of biological properties antioxidant, antibacterial, antitumour etc. In spite of huge resources enriched with exciting chemicals, the marine floras and faunas are largely unexplored for their anticancer properties. In recent past, numerous marine anticancer compounds have been isolated, characterized, identified and are under trials for human use. In this write up we have tried to compile about marine-derived compounds anticancer biological activities of diverse flora and fauna and their underlying mechanisms and the generous raise in these compounds examined for malignant growth treatment in the course of the most recent quite a long while.
Bovine milk is an important food component in the human diet due to its nutrient-rich metabolites. However, bovine subclinical mastitis alters the composition and quality of milk. In present study, California mastitis testing, somatic cell count, pH, and electrical conductivity were used as confirmatory tests to detect subclinical mastitis. The primary goal was to study metabolome and identify major pathogens in cows with subclinical mastitis. In this study, 29 metabolites were detected in milk using gas chromatography–mass spectrometry. Volatile acidic compounds, such as hexanoic acid, hexadecanoic acid, lauric acid, octanoic acid, n-decanoic acid, tricosanoic acid, tetradecanoic acid, and hypogeic acid were found in milk samples, and these impart good flavor to the milk. Metaboanalyst tool was used for metabolic pathway analysis and principal component estimation. In this study, EC and pH values in milk were significantly increased (p < 0.0001), whereas fat (p < 0.04) and protein (p < 0.0002) significantly decreased in animals with subclinical mastitis in comparison to healthy animals. Staphylococcus aureus was the predominant pathogen found (n = 54), followed by Escherichia coli (n = 30). Furthermore, antibiotic sensitivity revealed that Staphylococcus aureus was more sensitive to gentamicin (79.6%), whereas Escherichia coli showed more sensitivity to doxycycline hydrochloride (80%).
Context NLRP9 is a member of nucleotide-binding domain leucine-rich repeat-containing receptors and is found to be associated with many inflammatory diseases. In the current scenario, the identification of promising anti-inflammatory compounds from natural sources by repurposing approach is still relevant for the early prevention and effective management of the disease. Methods In the present study, we docked bioactives of Ashwagandha (Withanoside IV, Withanoside V, Withanolide A, Withanolide B, and Sitoindoside IX) and two control drugs against bovine NLRP9 protein. ADME/T analysis was used to determine the physiochemical properties of compounds and standard drugs. Molecular modeling was used to evaluate the correctness and quality of protein structures. In silico docking analysis revealed Withanolide B had the highest binding affinity score of −10.5 kcal/mol, whereas, among control drugs, doxycycline hydrochloride was most effective (−10.3 kcal/mol). The results of this study revealed that bioactives of Withania somnifera could be promising inhibitors against bovine NLRP9. In the present study, molecular simulation was used to measure protein conformational changes over time. The Rg value was found to be 34.77A°. RMSD and B-factor were also estimated to provide insights into the flexibility and mobile regions of protein structure. A functional protein network interaction was constructed from information collected from non-curative sources as protein-protein interactions (PPI) that play an important role in determining the function of the target protein and the ability of the drug molecule. Thus, in the present situation, it is important to identify bioactives with the potential to combat inflammatory diseases and provide strength and immunity to the host. However, there is still a need to study in vitro and in vivo to further support these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.