Abstract. The main purpose of this research is to examine the outcomes of process parameters of Wire Electro-discharge Machining over the tapered workpieces of Titanium Alloy (Ti6Al-4V). Taper angle, current and pulse-off time are considered as the controllable factors effecting the response variables. Each sample has been cut with varying sets of machine controllable parameters to assess their effect on response variables; kerf width, wire wear, Material Removal Rate and surface roughness. Analysis of variances is applied, and mean Reponses are determined to recognize and compare the most influencing parameters over the response variables for the WEDM Process. Regression model for the response variables are also developed using which optimized WEDM process parameters are determined for the optimal response variables. It can be concluded that varying thickness of materials due to tapered cross section affects all the four-response variable, while, current and pulse-off time along with their interactions have high impact over the response variables.
Surface structuring is a recognised technique to improve frictional properties of interfering surfaces. A sufficient number of studies have confirmed the successful application of structuring on mechanical seals, golf balls, engine cylinder, sliding bearings, hard disk drives, etc. Lately, structuring is applied to metal cutting tools. This study identifies the information regarding the manufacturing process with the vision to improve the machining performance. For this, a comparative analysis of friction and dry sliding wear behaviour of structured and unstructured tungsten cemented carbide was assessed. Tests were performed at different sliding speed at the constant normal load of 40 N. Results show that structuring carbide can improve friction and wear performance by 23%. Also, structuring can decreased the coefficient of friction by 7%. Energy-dispersive X-ray analysis was conducted to quantify elements concentration. Microhardness tests were performed and results revealed the improvement in hardness of structured carbide. The case study confirms that structuring cutting tools can effectively elevate machining performance and improve environmental sustainability. This research is noteworthy for tool manufactures, engineering component/ machine designers and biomedical engineers, as it highlights the comprehensive understanding of structuring carbide.
Organizations are nowadays focusing on utilizing the latest technologies to reduce the overall manufacturing costs without compromising on the product quality, and getting a competitive advantage. Lean principles are hence the mostly used manufacturing principles to get this objective of increased productivity by lowering the waste. Lean management and implementation is surely a complete teamwork as we can say, but is still majorly dependent on the senior management of any organization. This study goes with the purpose of investigating the criticality of the role of the senior or executive level management in the successful implementation of the lean manufacturing principles and how much difference it’s going to show with the current scenarios. The data has been collected by sending a questionnaire, which has 8 statements, targeting on the critical success factors, to the top management of 50 automotive manufacturing organizations of Karachi. The lean manufacturing trend and the involvement of the senior management towards its implementation is being identified after critically examining the received feedbacks.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.