Covalent organic frameworks (COFs) have attracted great attention across diverse research fields. However, only a few reports about the biomedical application of COFs are found in the literature. Attributed to the highly porous and tunable structure, as well as good thermal stability, COFs show great potential as drug carriers for chemotherapy. In this work, doxorubicin (DOX) was successfully in situ loaded into a COF by a one‐pot method for the first time. The resultant DOX@COF platform exhibited high drug‐loading capacity (32.1 wt %) and pH‐responsive release property. In vitro and in vivo experiments demonstrated its good biocompatibility and enhanced antitumor efficacy.
Attributed to its simplicity, noninvasive features, and excellent therapeutic effect, phototherapy has recently received considerable interest. The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) holds great promise in the treatment of tumors, and in order to achieve satisfactory antitumor efficacy, suitable photosensitizers are a prerequisite. In this paper, highly monodispersed covalent organic framework (COF) nanoparticles were first prepared by a mild solution-phase synthesis method at room temperature. The as-synthesized nonporphyrin containing COF nanoparticle was employed as a novel photosensitizer for PDT, which exhibited an excellent photodynamic effect under 650 or 808 nm laser irradiation. Then, CuSe nanoparticles, an ideal photothermal agent, were successfully conjugated with COF to form a dual functional photosensitizer for phototherapy. The resultant COF−CuSe platform possesses an excellent synergistic photothermal and photodynamic effect. The in vitro and in vivo experiments indicated an enhanced therapeutic effect on killing cancer cells and inhibiting the tumor growth. This work demonstrates the great potential of nonporphyrin containing COF as a photosensitizer for photodynamic cancer therapy and provides a facile and efficient approach to construct COF-based multifunctional theranostic agents for cancer diagnosis and treatment by combining COFs with other functional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.