The use of urea as an N fertilizer has increased to such an extent that it is now the most widely used fertilizer in the world. However, N losses as a result of ammonia volatilization lead to a decrease in its efficiency, therefore different methods have been developed over the years to reduce these losses. One of the most recent involves the use of urea combined with urease inhibitors, such as N-(n-butyl) thiophosphoric triamide (NBPT), in an attempt to delay the hydrolysis of urea in the soil. The aim of this study was to perform an in-depth analysis of the effect that NBPT use has on plant growth and N metabolism. Wheat plants were cultivated in a greenhouse experiment lasting 4 weeks and fertilized with urea and NBPT at different concentrations (0, 0.012, 0.062, 0.125%). Each treatment was replicated six times. A nonfertilized control was also cultivated. Several parameters related with N metabolism were analysed at the end of growth period. NBPT use was found to have visible effects, such as a transitory yellowing of the leaf tips, at the end of the first week of treatment. At a metabolic level, plants treated with the inhibitor were found to have more urea in their tissues and a lower amino acid content, lower glutamine synthetase activity, and lower urease and glutamine synthetase content at the end of the study period, whereas their urease activity seemed to have recovered by this stage.
The widespread use of NO(3)(-) fertilization has had a major ecological impact. NH(4)(+) nutrition may help to reduce this impact, although high NH(4)(+) concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH(4)(+) influx/efflux cycle that carries an extra energetic cost for root cells. In this study, high irradiance (HI) was found to induce a notable tolerance to NH(4)(+) in the range 2.5-10mM in pea plants by inducing higher C availability, as shown by carbohydrate content. This capacity was accompanied by a general lower relative N content, indicating that tolerance is not achieved through higher net N assimilation on C-skeletons, and it was also not attributable to increased GS content or activity in roots or leaves. Moreover, HI plants showed higher ATP content and respiration rates. This extra energy availability is related to the internal NH(4)(+) content regulation (probably NH(4)(+) influx/efflux) and to an improvement of the cell ionic balance. The limited C availability at lower irradiance (LI) and high NH(4)(+) resulted in a series of metabolic imbalances, as reflected in a much higher organic acid content, thereby suggesting that the origin of the toxicity in plants cultured at high NH(4)(+) and LI is related to their inability to avoid large-scale accumulation of the NH(4)(+) ion.
The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.