One of the unresolved issues of the European Water Framework Directive is the unavailability of realistic water reference materials for the organic priority pollutants at low nanogram-per-liter concentrations. In the present study, three different types of ready-to-use water test materials were developed for polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and tributyltin (TBT) at nanogram-per-liter levels. The first type simulated the dissolved phase in the water and comprised of a solution of humic acids (HA) at 5 mg L−1 dissolved organic carbon (DOC) and a spike of the target compounds. The second type of water sample incorporated the particulate phase in water. To this end, model suspended particulate matter (SPM) with a realistic particle size was produced by jet milling soil and sediments containing known amounts of PAHs, PBDEs and TBT and added as slurry to mineral water. The most complex test materials mimicked “whole water” consequently containing both phases, the model SPM and the HA solution with the target analytes strongly bound to the SPM. In this paper, the development of concepts, processing of the starting materials, characterisation of the HA and model SPMs as well as results for homogeneity and stability testing of the ready-to-use test materials are described in detail.Graphical AbstractVials containing 0.5 g of model SPM, black caps for TBT, silver caps for PAH and red caps for PBDEs, respectively.Graphical AbstractPetri dishes with dried model SPMs; to the left 95.7 ± 0.9 mg of SPM containing PBDEs; in the middle 95.8 ± 0.7 mg of SPM containing TBT and to the right 93.7 mg ± 0.7 mg of SPM containing PAHs
The European Water Framework Directive 2000/60/EC requires monitoring of organic priority pollutants in so-called whole water samples, i.e. in aqueous nonfiltered samples that contain natural colloidal and suspended particulate matter. Colloids and suspended particles in the liquid phase constitute a challenge for sample homogeneity and stability. Within the joint research project ENV08 ''Traceable measurements for monitoring critical pollutants under the European Water Framework Directive 2000/60/EC'', whole water test materials were developed by spiking defined amounts of aqueous slurries of ultrafinely milled contaminated soil or sediment and aqueous solutions of humic acid into a natural mineral water matrix. This paper presents the results of an European-wide interlaboratory comparison (ILC) using this type of test materials. Target analytes were tributyltin, polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in the ng/L concentration range. Results of the ILC indicate that the produced materials are sufficiently homogeneous and stable to serve as samples for, e.g. proficiency testing or method validation. To our knowledge, this is the first time that ready-to-use water materials with a defined amount of suspended particulate and colloidal matter have been applied as test samples in an interlaboratory exercise. These samples meet the requirements of the European Water Framework Directive. Previous proficiency testing schemes mainly employed filtered water samples fortified with a spike of the target analyte in a water-miscible organic solvent. KeywordsWater Framework Directive Á Interlaboratory comparison Á Whole water sample Á Suspended particulate matter Á Polycyclic aromatic hydrocarbons Á Polybrominated diphenyl ethers Á Tributlyltin Electronic supplementary material The online version of this article (
Certified water reference materials are currently not available for most of the hydrophobic organic pollutants listed in the EU Water Framework Directive. To find the most suitable container type for subsequent reference material productions, feasibility studies for the preparation of waters with polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and tributyltin (TBT) close to environmental quality standards in water have been performed. Due to the hydrophobic nature of these compounds and their tendency to adsorb onto container walls, an adequate selection of the most appropriate material for containment, storage and transport of water reference materials is crucial. Three different materials (aluminium, amber glass and fluorinated polyethylene, FPE) and three volumes (500/600 mL, 1000/1200 mL and 2000/3000 mL, depending on commercial availability) were tested at ng L -1 level of the target compounds. FPE shows by far the highest loss of analytes due to adsorption onto the container walls for all compounds studied. Aluminium and glass are equally suited for PAHs and PBDEs, but aluminium is unsuitable as container material for TBT due to acid cleaning requirements. The volume of the containers had no dramatic effect on the adsorption behaviour of target compounds for the different volumes tested.
We have prepared and evaluated three whole water test materials containing eight polycyclic aromatic hydrocarbons (PAHs), six polybrominated diphenyl ethers (PBDEs) and tributyltin (TBT) with respect to homogeneity and short-term stability. The test materials were used as samples in two inter-laboratory comparisons. The materials were composed of natural mineral water and model suspended particulate matter (SPM) containing the target compounds at ng L -1 levels. The expanded uncertainty of the estimated mass concentrations in the final test materials was obtained by combining contributions from the homogeneity, the stability and the model SPM characterization. The whole water materials were sufficiently homogeneous and stable at 4°C for their intended use. In total, 12 out of 15 investigated target parameters could be assessed to be present with a relative combined expanded uncertainty below 25 %. The outcome of the two interlaboratory comparisons confirmed the good quality of the test materials and the level of uncertainties associated with the estimated mass concentrations. These findings are an important contribution towards the development of whole water matrix reference materials certified for PAH, PBDE and TBT in support of the Water Framework Directive of the European Union.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.