PURPOSE Preclinical studies demonstrated that ATR inhibition can exploit synthetic lethality (eg, in cancer cells with impaired compensatory DNA damage responses through ATM loss) as monotherapy and combined with DNA-damaging drugs such as carboplatin. PATIENTS AND METHODS This phase I trial assessed the ATR inhibitor M6620 (VX-970) as monotherapy (once or twice weekly) and combined with carboplatin (carboplatin on day 1 and M6620 on days 2 and 9 in 21-day cycles). Primary objectives were safety, tolerability, and maximum tolerated dose; secondary objectives included pharmacokinetics and antitumor activity; exploratory objectives included pharmacodynamics in timed paired tumor biopsies. RESULTS Forty patients were enrolled; 17 received M6620 monotherapy, which was safe and well tolerated. The recommended phase II dose (RP2D) for once- or twice-weekly administration was 240 mg/m2. A patient with metastatic colorectal cancer harboring molecular aberrations, including ATM loss and an ARID1A mutation, achieved RECISTv1.1 complete response and maintained this response, with a progression-free survival of 29 months at last assessment. Twenty-three patients received M6620 with carboplatin, with mechanism-based hematologic toxicities at higher doses, requiring dose delays and reductions. The RP2D for combination therapy was M6620 90 mg/m2 with carboplatin AUC5. A patient with advanced germline BRCA1 ovarian cancer achieved RECISTv1.1 partial response and Gynecologic Cancer Intergroup CA125 response despite being platinum refractory and PARP inhibitor resistant. An additional 15 patients had RECISTv1.1 stable disease as best response. Pharmacokinetics were dose proportional and exceeded preclinical efficacious levels. Pharmacodynamic studies demonstrated substantial inhibition of phosphorylation of CHK1, the downstream ATR substrate. CONCLUSION To our knowledge, this report is the first of an ATR inhibitor as monotherapy and combined with carboplatin. M6620 was well tolerated, with target engagement and preliminary antitumor responses observed.
ARID1A is a tumour suppressor gene that is frequently mutated in clear cell and endometrioid carcinomas of the ovary and endometrium and is an important clinical biomarker for novel treatment approaches for patients with ARID1A defects. However, the accuracy of ARID1A immunohistochemistry (IHC) as a surrogate for mutation status has not fully been established for patient stratification in clinical trials. Here we tested whether ARID1A IHC could reliably predict ARID1A mutations identified by next‐generation sequencing. Three commercially available antibodies – EPR13501 (Abcam), D2A8U (Cell Signaling), and HPA005456 (Sigma) – were optimised for IHC using cell line models and human tissue, and screened across a cohort of 45 gynaecological tumours. IHC was scored independently by three pathologists using an immunoreactive score. ARID1A mutation status was assessed using two independent sequencing platforms and the concordance between ARID1A mutation and protein expression was evaluated using Receiver Operating Characteristic statistics. Overall, 21 ARID1A mutations were identified in 14/43 assessable tumours (33%), the majority of which were predicted to be deleterious. Mutations were identified in 6/17 (35%) ovarian clear cell carcinomas, 5/8 (63%) ovarian endometrioid carcinomas, 2/5 (40%) endometrial carcinomas, and 1/7 (14%) carcinosarcomas. ROC analysis identified greater than 95% concordance between mutation status and IHC using a modified immunoreactive score for all three antibodies allowing a definitive cut‐point for ARID1A mutant status to be calculated. Comprehensive assessment of concordance of ARID1A IHC and mutation status identified EPR13501 as an optimal antibody, with 100% concordance between ARID1A mutation status and protein expression, across different gynaecological histological subtypes. It delivered the best inter‐rater agreement between all pathologists, as well as a clear cost‐benefit advantage. This could allow patients to be accurately stratified based on their ARID1A IHC status into early phase clinical trials.
The most significant prognostic factor in early breast cancer is lymph node involvement. This stage between localized and systemic disease is key to understanding breast cancer progression; however, our knowledge of the evolution of lymph node malignant invasion remains limited, as most currently available data are derived from primary tumors. In 11 patients with treatment-naïve node-positive early breast cancer without clinical evidence of distant metastasis, we investigated lymph node evolution using spatial multiregion sequencing ( = 78 samples) of primary and lymph node deposits and genomic profiling of matched longitudinal circulating tumor DNA (ctDNA). Linear evolution from primary to lymph node was rare (1/11), whereas the majority of cases displayed either early divergence between primary and nodes (4/11) or no detectable divergence (6/11), where both primary and nodal cells belonged to a single recent expansion of a metastatic clone. Divergence of metastatic subclones was driven in part by APOBEC. Longitudinal ctDNA samples from 2 of 7 subjects with evaluable plasma taken perioperatively reflected the two major evolutionary patterns and demonstrate that private mutations can be detected even from early metastatic nodal deposits. Moreover, node removal resulted in disappearance of private lymph node mutations in ctDNA. This study sheds new light on a crucial evolutionary step in the natural history of breast cancer, demonstrating early establishment of axillary lymph node metastasis in a substantial proportion of patients. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.