Automatic identification of human activity has led to a possibility of providing personalised services in different domains i.e. healthcare, security and sport etc. With advancement in sensor technology, automatic activity recognition can be done in an unobtrusive and non-intrusive way. The placement of the sensor and wearability are ones of vital keys in the successful activity recognition of free space livings. Experiments were carried out to investigate the use of a single wrist-worn accelerometer for automatic activity classification. The performances of two classification algorithms namely Decision Tree C4.5 and Artificial Neural Network were compared using four different sets of features to classify five daily living activities. The result revealed that Decision Tree C4.5 has outperformed Neural Network regardless of the different sets of features used. The best classification result was achieved using the set containing the most popular and accurate features i.e. mean, minimum, energy and sample differences etc. The best accuracy of 94.13% was achieved using only wrist-worn accelerometer showing a possibility of automatic activity classification with no movement constrain, discomfort and stigmatisation caused by the sensor.
Background Mortality remains unacceptably high in patients with heart failure and reduced left ventricular ejection fraction (LVEF) despite advances in therapeutics. We hypothesised that a novel artificial intelligence approach could better assess multiple and higher-dimension interactions of comorbidities, and define clusters of β-blocker efficacy in patients with sinus rhythm and atrial fibrillation.Methods Neural network-based variational autoencoders and hierarchical clustering were applied to pooled individual patient data from nine double-blind, randomised, placebo-controlled trials of β blockers. All-cause mortality during median 1•3 years of follow-up was assessed by intention to treat, stratified by electrocardiographic heart rhythm. The number of clusters and dimensions was determined objectively, with results validated using a leave-one-trial-out approach. This study was prospectively registered with ClinicalTrials.gov (NCT00832442) and the PROSPERO database of systematic reviews (CRD42014010012).Findings 15 659 patients with heart failure and LVEF of less than 50% were included, with median age 65 years (IQR 56-72) and LVEF 27% (IQR 21-33). 3708 (24%) patients were women. In sinus rhythm (n=12 822), most clusters demonstrated a consistent overall mortality benefit from β blockers, with odds ratios (ORs) ranging from 0•54 to 0•74. One cluster in sinus rhythm of older patients with less severe symptoms showed no significant efficacy (OR 0•86, 95% CI 0•67-1•10; p=0•22). In atrial fibrillation (n=2837), four of five clusters were consistent with the overall neutral effect of β blockers versus placebo (OR 0•92, 0•77-1•10; p=0•37). One cluster of younger atrial fibrillation patients at lower mortality risk but similar LVEF to average had a statistically significant reduction in mortality with β blockers (OR 0•57, 0•35-0•93; p=0•023). The robustness and consistency of clustering was confirmed for all models (p<0•0001 vs random), and cluster membership was externally validated across the nine independent trials. Interpretation An artificial intelligence-based clustering approach was able to distinguish prognostic response from β blockers in patients with heart failure and reduced LVEF. This included patients in sinus rhythm with suboptimal efficacy, as well as a cluster of patients with atrial fibrillation where β blockers did reduce mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.