Inanimate objects or surfaces contaminated with infectious agents, referred to as fomites, play an important role in the spread of viruses, including SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The long persistence of viruses (hours to days) on surfaces calls for an urgent need for effective surface disinfection strategies to intercept virus transmission and the spread of diseases. Elucidating the physicochemical processes and surface science underlying the adsorption and transfer of virus between surfaces, as well as their inactivation, is important for understanding how diseases are transmitted and for developing effective intervention strategies. This review summarizes the current knowledge and underlying physicochemical processes of virus transmission, in particular via fomites, and common disinfection approaches. Gaps in knowledge and the areas in need of further research are also identified. The review focuses on SARS-CoV-2, but discussion of related viruses is included to provide a more comprehensive review given that much remains unknown about SARS-CoV-2. Our aim is that this review will provide a broad survey of the issues involved in fomite transmission and intervention to a wide range of readers to better enable them to take on the open research challenges.
Micro-blade design is an important factor in the cutting of single cells and other biological structures. This paper describes the fabrication process of three-dimensional (3D) micro-blades for the cutting of single cells in a microfluidic “guillotine” intended for fundamental wound repair and regeneration studies. Our microfluidic guillotine consists of a fixed 3D micro-blade centered in a microchannel to bisect cells flowing through. We show that the Nanoscribe two-photon polymerization direct laser writing system is capable of fabricating complex 3D micro-blade geometries. However, structures made of the Nanoscribe IP-S resin have low adhesion to silicon, and they tend to peel off from the substrate after at most two times of replica molding in poly(dimethylsiloxane) (PDMS). Our work demonstrates that the use of a secondary mold replicates Nanoscribe-printed features faithfully for at least 10 iterations. Finally, we show that complex micro-blade features can generate different degrees of cell wounding and cell survival rates compared with simple blades possessing a vertical cutting edge fabricated with conventional 2.5D photolithography. Our work lays the foundation for future applications in single cell analyses, wound repair and regeneration studies, as well as investigations of the physics of cutting and the interaction between the micro-blade and biological structures.
Generating uniform tissue microfragments is important in many applications, including disease diagnostics, drug screening, spatial-omics, and fundamental wound healing and tissue regeneration studies. Common mechanical dissection methods, such as manual mincing, are imprecise and result in fragments with a broad range in size. This work aims to develop a microscale dicing device, referred to as the “μDicer,” consisting of a hollow array of blades spaced hundreds of micrometers apart. A tissue pushed through this array is diced into many microfragments simultaneously. The focus of this paper is on the fabrication process of the μDicer using a combination of isotropic and anisotropic etching in silicon. A single silicon oxide etch mask is used in a dry silicon etcher for both a tapered etch to form the microblades, and an anisotropic etch to form the through-holes in the hollow blade array. The use of a single mask reduces the mask fabrication time by more than twofold compared with two-mask approaches often used to generate similar etch features. The etch parameters and the design of the etch mask control the blade angles and the edge profiles of the blades. Specifically, the incorporation of “notches” in the two-dimensional mask design generates three-dimensional microserrated features on the blade edges. A custom, open-source etching model is also developed to facilitate the prediction of the etch profiles. Finally, a proof-of-concept application of the μDicer to dissect soft materials and tissues is demonstrated.
Micro-blade design is an important factor in the cutting of single cells and other biological structures. This paper describes the fabrication process of three dimensional (3D) micro-blades for the cutting of single cells in a microfluidic “guillotine” intended for fundamental wound repair and regeneration studies. Our microfluidic guillotine consists of a fixed 3D micro-blade centered in a microchannel to bisect cells flowing through. We show that the Nanoscribe two-photon polymerization direct laser writing system is capable of fabricating complex 3D micro-blade geometries. However, structures made of the Nanoscribe IP-S resin have low adhesion to silicon, and they tend to peel off from the substrate after at most two times of replica molding in poly(dimethylsiloxane) (PDMS). Our work demonstrates that the use of a secondary mold replicates Nanoscribe printed features faithfully for at least 10 iterations. Finally, we show that complex micro-blade features can generate different degrees of cell wounding and cell survival rates compared with simple blades possessing a vertical cutting edge fabricated with conventional 2.5D photolithography. Our work lays the foundation for future applications in single cell analyses, wound repair and regeneration studies, as well as investigations of the physics of cutting and the interaction between the micro-blade and biological structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.