We present a method to control the emotional prosody of Text to Speech (TTS) systems by using phoneme-level intermediate features (pitch, energy, and duration) as levers. As a key idea, we propose Differential Scaling (DS) to disentangle features relating to affective prosody from those arising due to acoustics conditions and speaker identity. With thorough experimental studies, we show that the proposed method improves over the prior art in accurately emulating the desired emotions while retaining the naturalness of speech. We extend the traditional evaluation of using individual sentences for a more complete evaluation of HCI systems. We present a novel experimental setup by replacing an actor with a TTS system in offline and live conversations. The emotion to be rendered is either predicted or manually assigned. The results show that the proposed method is strongly preferred over the state-of-the-art TTS system and adds the much-coveted "human touch" in machine dialogue. Audio samples for our experiments and the code are available at: https: //emtts.github.io/tts-demo/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.