(4) Jicamarca Radio Observatory, Instituto Geofísico del Perú, Peru.We present recently obtained range-Doppler images of the Moon using 6 meter wavelength. For this study, we used the Jicamarca Radio Observatory 49.92 MHz radar. The observations were performed using circular polarization on transmit and two orthogonal linear polarizations on receive, allowing scattering images to be obtained with the polarization matched to the transmitted wave (polarized), and at a polarization orthogonal to the transmitted wave (depolarized). The long wavelength is severely affected by ionospheric propagation, including variable phase delay and change of polarization state of the wave. To mitigate these issues, we use the subradar point of the Moon as a calibration point, with "known" polarization and range migration characteristics. Due to the long wavelength that penetrates efficiently into the subsurface of the Moon, the radar images are especially useful for studies of subsurface composition. Two antenna interferometry on receive was used to remove the Doppler North-South ambiguity. The images have approximately 10 km resolution in range 20 km resolution in Doppler, allowing many large scale features, including maria, terrae, and impact craters to be identified. Strong depolarized return is observed from relatively new larger impact craters with large breccia and shallow regolith. Terrae regions with less lossy surface material also appear brighter in both depolarized and polarized images. A large region in the area near the Mare Orientale impact basin has overall higher than mean radar backscatter in both polarized and depolaried returns, indicating higher than average presence of relatively newly formed large breccia in this region. Mare regions are characterized by lower polarized and depolarized return, indicating that there is higher loss of the radio wave allowing less subsurface scattering to reach back. We also report low polarized and depolarized backscatter from an old impact basin in the Schiller-Schickard region, and also North of the Mare Imbrium region -both regions that have an optical appearance of Terrae composition, but a radar signature of a basaltic composition.
The Jicamarca Radio Observatory (JRO) two-dimensional square array radar system operating at ~6-m wavelength was used to study the Moon and low Earth orbit satellites using the Range-Doppler inverse synthetic aperture radar technique also known as Delay-Doppler imaging. The radar data was collected on Oct 21, 2015. A circularly polarized coded pulse was transmitted from a quarter-array antenna segment during lunar transit over JRO. Dual-linear polarization receive systems were employed on two quarter-array segments and on two 1/64th array modules giving the longest possible baselines across the transit path. A Range-Doppler mapping technique that uses the rotational motion of the targets and an autofocusing motion and ionospheric delay compensation technique has been implemented to generate the two-dimensional maps of the point-target (Satellite) and range-spread target (Moon). A review of our technique and the maps obtained from these observations is presented herein. Range-Doppler maps of the Moon and satellites are instructive with regards to possible further improvement of the technique, especially regarding ionospheric compensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.