Smartphones have become essential in our daily lives. Many works can be done by using it like, browse the internet, and download many applications for each device through the available store. As a result, the number of malware applications downloaded also increases. These malware carries out various activities behind the scenes, such as breach of confidentiality, breach of privacy, loss of confidentiality, system breakdown, theft of sensitive information, etc.Many types of research and studies have proposed different techniques to detect malicious programs, but these measures contain weak points, which are illustrated by efficiency, speed, and lack of comprehensiveness. In this paper, a proposed system is designed and implemented to detect malware in smartphones using anomaly detection technology that begins to extract the important features that play an effective role in detecting malicious code and applying machine learning algorithms. The proposed system has been tested using a hybrid Genetic algorithm, and the Support Vector Machine data has been registered with an accuracy of (0.9282%). The experimental results indicate that the proposed system has a high average accuracy rate compared with other existing methods where there is a (0.8848%) average accuracy using Probabilistic Neural Network, while the average accuracies of (0.8835%) and (0.8715%) respectively with Support Vector Machine and K-Nearest Neighbors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.